2bzk: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[2bzk]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2BZK OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2BZK FirstGlance]. <br> | <table><tr><td colspan='2'>[[2bzk]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2BZK OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2BZK FirstGlance]. <br> | ||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ANP:PHOSPHOAMINOPHOSPHONIC+ACID-ADENYLATE+ESTER'>ANP</scene>< | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ANP:PHOSPHOAMINOPHOSPHONIC+ACID-ADENYLATE+ESTER'>ANP</scene></td></tr> | ||
<tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=NH2:AMINO+GROUP'>NH2</scene></td></tr> | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=NH2:AMINO+GROUP'>NH2</scene></td></tr> | ||
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1xqz|1xqz]], [[1xr1|1xr1]], [[1xws|1xws]], [[1yhs|1yhs]], [[1yi3|1yi3]], [[1yi4|1yi4]], [[1ywv|1ywv]], [[1yxs|1yxs]], [[1yxt|1yxt]], [[1yxu|1yxu]], [[1yxv|1yxv]], [[1yxx|1yxx]], [[2bik|2bik]], [[2bil|2bil]], [[2bzh|2bzh]], [[2bzi|2bzi]], [[2bzj|2bzj]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1xqz|1xqz]], [[1xr1|1xr1]], [[1xws|1xws]], [[1yhs|1yhs]], [[1yi3|1yi3]], [[1yi4|1yi4]], [[1ywv|1ywv]], [[1yxs|1yxs]], [[1yxt|1yxt]], [[1yxu|1yxu]], [[1yxv|1yxv]], [[1yxx|1yxx]], [[2bik|2bik]], [[2bil|2bil]], [[2bzh|2bzh]], [[2bzi|2bzi]], [[2bzj|2bzj]]</td></tr> | ||
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Non-specific_serine/threonine_protein_kinase Non-specific serine/threonine protein kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.11.1 2.7.11.1] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Non-specific_serine/threonine_protein_kinase Non-specific serine/threonine protein kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.11.1 2.7.11.1] </span></td></tr> | ||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2bzk FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2bzk OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2bzk RCSB], [http://www.ebi.ac.uk/pdbsum/2bzk PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2bzk FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2bzk OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2bzk RCSB], [http://www.ebi.ac.uk/pdbsum/2bzk PDBsum]</span></td></tr> | ||
<table> | </table> | ||
== Function == | |||
[[http://www.uniprot.org/uniprot/PIM1_HUMAN PIM1_HUMAN]] Proto-oncogene with serine/threonine kinase activity involved in cell survival and cell proliferation and thus providing a selective advantage in tumorigenesis. Exerts its oncogenic activity through: the regulation of MYC transcriptional activity, the regulation of cell cycle progression and by phosphorylation and inhibition of proapoptotic proteins (BAD, MAP3K5, FOXO3). Phosphorylation of MYC leads to an increase of MYC protein stability and thereby an increase of transcriptional activity. The stabilization of MYC exerted by PIM1 might explain partly the strong synergism between these two oncogenes in tumorigenesis. Mediates survival signaling through phosphorylation of BAD, which induces release of the anti-apoptotic protein Bcl-X(L)/BCL2L1. Phosphorylation of MAP3K5, an other proapoptotic protein, by PIM1, significantly decreases MAP3K5 kinase activity and inhibits MAP3K5-mediated phosphorylation of JNK and JNK/p38MAPK subsequently reducing caspase-3 activation and cell apoptosis. Stimulates cell cycle progression at the G1-S and G2-M transitions by phosphorylation of CDC25A and CDC25C. Phosphorylation of CDKN1A, a regulator of cell cycle progression at G1, results in the relocation of CDKN1A to the cytoplasm and enhanced CDKN1A protein stability. Promote cell cycle progression and tumorigenesis by down-regulating expression of a regulator of cell cycle progression, CDKN1B, at both transcriptional and post-translational levels. Phosphorylation of CDKN1B,induces 14-3-3-proteins binding, nuclear export and proteasome-dependent degradation. May affect the structure or silencing of chromatin by phosphorylating HP1 gamma/CBX3. Acts also as a regulator of homing and migration of bone marrow cells involving functional interaction with the CXCL12-CXCR4 signaling axis.<ref>PMID:1825810</ref> <ref>PMID:10664448</ref> <ref>PMID:12431783</ref> <ref>PMID:15528381</ref> <ref>PMID:16356754</ref> <ref>PMID:18593906</ref> <ref>PMID:19749799</ref> | |||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 22: | Line 24: | ||
==See Also== | ==See Also== | ||
*[[Proto-oncogene serine/threonine-protein kinase|Proto-oncogene serine/threonine-protein kinase]] | *[[Proto-oncogene serine/threonine-protein kinase|Proto-oncogene serine/threonine-protein kinase]] | ||
== References == | |||
<references/> | |||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: Non-specific serine/threonine protein kinase]] | [[Category: Non-specific serine/threonine protein kinase]] | ||
[[Category: Arrowsmith, C | [[Category: Arrowsmith, C]] | ||
[[Category: Bullock, A | [[Category: Bullock, A]] | ||
[[Category: Debreczeni, J E | [[Category: Debreczeni, J E]] | ||
[[Category: Delft, F Von | [[Category: Delft, F Von]] | ||
[[Category: Edwards, A | [[Category: Edwards, A]] | ||
[[Category: Knapp, S | [[Category: Knapp, S]] | ||
[[Category: Sundstrom, M | [[Category: Sundstrom, M]] | ||
[[Category: Weigelt, J | [[Category: Weigelt, J]] | ||
[[Category: Atp-binding]] | [[Category: Atp-binding]] | ||
[[Category: Cancer]] | [[Category: Cancer]] |
Revision as of 05:16, 25 December 2014
CRYSTAL STRUCTURE OF THE HUMAN PIM1 IN COMPLEX WITH AMPPNP AND PIMTIDECRYSTAL STRUCTURE OF THE HUMAN PIM1 IN COMPLEX WITH AMPPNP AND PIMTIDE
Structural highlights
Function[PIM1_HUMAN] Proto-oncogene with serine/threonine kinase activity involved in cell survival and cell proliferation and thus providing a selective advantage in tumorigenesis. Exerts its oncogenic activity through: the regulation of MYC transcriptional activity, the regulation of cell cycle progression and by phosphorylation and inhibition of proapoptotic proteins (BAD, MAP3K5, FOXO3). Phosphorylation of MYC leads to an increase of MYC protein stability and thereby an increase of transcriptional activity. The stabilization of MYC exerted by PIM1 might explain partly the strong synergism between these two oncogenes in tumorigenesis. Mediates survival signaling through phosphorylation of BAD, which induces release of the anti-apoptotic protein Bcl-X(L)/BCL2L1. Phosphorylation of MAP3K5, an other proapoptotic protein, by PIM1, significantly decreases MAP3K5 kinase activity and inhibits MAP3K5-mediated phosphorylation of JNK and JNK/p38MAPK subsequently reducing caspase-3 activation and cell apoptosis. Stimulates cell cycle progression at the G1-S and G2-M transitions by phosphorylation of CDC25A and CDC25C. Phosphorylation of CDKN1A, a regulator of cell cycle progression at G1, results in the relocation of CDKN1A to the cytoplasm and enhanced CDKN1A protein stability. Promote cell cycle progression and tumorigenesis by down-regulating expression of a regulator of cell cycle progression, CDKN1B, at both transcriptional and post-translational levels. Phosphorylation of CDKN1B,induces 14-3-3-proteins binding, nuclear export and proteasome-dependent degradation. May affect the structure or silencing of chromatin by phosphorylating HP1 gamma/CBX3. Acts also as a regulator of homing and migration of bone marrow cells involving functional interaction with the CXCL12-CXCR4 signaling axis.[1] [2] [3] [4] [5] [6] [7] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. See AlsoReferences
|
|
Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)
OCA- Homo sapiens
- Non-specific serine/threonine protein kinase
- Arrowsmith, C
- Bullock, A
- Debreczeni, J E
- Delft, F Von
- Edwards, A
- Knapp, S
- Sundstrom, M
- Weigelt, J
- Atp-binding
- Cancer
- Complex transferase-peptide
- Kinase
- Leukemia
- Nuclear protein
- Nucleotide-binding
- Phosphorylation
- Pim1
- Proto- oncogene
- Serine/threonine-protein kinase
- Transferase
- Transferase-peptide complex