4d0o: Difference between revisions
No edit summary |
No edit summary |
||
Line 6: | Line 6: | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4d0o FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4d0o OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4d0o RCSB], [http://www.ebi.ac.uk/pdbsum/4d0o PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4d0o FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4d0o OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4d0o RCSB], [http://www.ebi.ac.uk/pdbsum/4d0o PDBsum]</span></td></tr> | ||
</table> | </table> | ||
== Function == | |||
[[http://www.uniprot.org/uniprot/AKP13_HUMAN AKP13_HUMAN]] Anchors cAMP-dependent protein kinase (PKA) and acts as an adapter protein to selectively couple G alpha-13 and Rho. Augments gene activation by the estrogen receptor in an element-specific and ligand-dependent manner. Activates estrogen receptor beta by a p38 MAPK-dependent pathway. Stimulates exchange activity on Rho proteins in vitro, but not on CDC42, Ras or Rac and may bind calcium ions.<ref>PMID:11546812</ref> <ref>PMID:9627117</ref> <ref>PMID:9891067</ref> <ref>PMID:11579095</ref> | |||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == |
Revision as of 01:15, 25 December 2014
AKAP13 (AKAP-Lbc) DH domainAKAP13 (AKAP-Lbc) DH domain
Structural highlights
Function[AKP13_HUMAN] Anchors cAMP-dependent protein kinase (PKA) and acts as an adapter protein to selectively couple G alpha-13 and Rho. Augments gene activation by the estrogen receptor in an element-specific and ligand-dependent manner. Activates estrogen receptor beta by a p38 MAPK-dependent pathway. Stimulates exchange activity on Rho proteins in vitro, but not on CDC42, Ras or Rac and may bind calcium ions.[1] [2] [3] [4] Publication Abstract from PubMedThe RhoGEF domain of AKAP-Lbc (AKAP13) catalyses nucleotide exchange on RhoA and is involved in development of cardiac hypertrophy. The RhoGEF activity of AKAP-Lbc has also been implicated in cancer. We have determined the X-ray crystal structure of the complex between RhoA:GDP and the AKAP-Lbc RhoGEF (DH-PH) domain to 2.1 A resolution. The structure reveals important differences compared to related RhoGEF proteins such as Leukemia-associated RhoGEF. Nucleotide exchange assays comparing the activity of the DH-PH domain to the DH domain alone showed no role for the PH domain in nucleotide exchange, which is explained by the RhoA:AKAP-Lbc structure. Comparison to a structure of the isolated AKAP-Lbc DH domain revealed a change in conformation of the N-terminal 'GEF switch' region upon binding to RhoA. Isothermal titration calorimetry showed that AKAP-Lbc has only micromolar affinity for RhoA which combined with the presence of potential binding pockets for small molecules on AKAP-Lbc raises the possibility of targeting AKAP-Lbc with guanine nucleotide exchange factor inhibitors. The Crystal Structure of the RhoA : AKAP-Lbc DH-PH Domain Complex.,Abdul Azeez KR, Knapp S, Fernandes JM, Klussmann E, Elkins JM Biochem J. 2014 Sep 4. PMID:25186459[5] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|