4j6i: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 7: Line 7:
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4j6i FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4j6i OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4j6i RCSB], [http://www.ebi.ac.uk/pdbsum/4j6i PDBsum]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4j6i FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4j6i OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4j6i RCSB], [http://www.ebi.ac.uk/pdbsum/4j6i PDBsum]</span></td></tr>
</table>
</table>
== Function ==
[[http://www.uniprot.org/uniprot/PK3CG_HUMAN PK3CG_HUMAN]] Phosphoinositide-3-kinase (PI3K) that phosphorylates PtdIns(4,5)P2 (Phosphatidylinositol 4,5-bisphosphate) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 plays a key role by recruiting PH domain-containing proteins to the membrane, including AKT1 and PDPK1, activating signaling cascades involved in cell growth, survival, proliferation, motility and morphology. Links G-protein coupled receptor activation to PIP3 production. Involved in immune, inflammatory and allergic responses. Modulates leukocyte chemotaxis to inflammatory sites and in response to chemoattractant agents. May control leukocyte polarization and migration by regulating the spatial accumulation of PIP3 and by regulating the organization of F-actin formation and integrin-based adhesion at the leading edge. Controls motility of dendritic cells. Together with PIK3CD is involved in natural killer (NK) cell development and migration towards the sites of inflammation. Participates in T-lymphocyte migration. Regulates T-lymphocyte proliferation and cytokine production. Together with PIK3CD participates in T-lymphocyte development. Required for B-lymphocyte development and signaling. Together with PIK3CD participates in neutrophil respiratory burst. Together with PIK3CD is involved in neutrophil chemotaxis and extravasation. Together with PIK3CB promotes platelet aggregation and thrombosis. Regulates alpha-IIb/beta-3 integrins (ITGA2B/ ITGB3) adhesive function in platelets downstream of P2Y12 through a lipid kinase activity-independent mechanism. May have also a lipid kinase activity-dependent function in platelet aggregation. Involved in endothelial progenitor cell migration. Negative regulator of cardiac contractility. Modulates cardiac contractility by anchoring protein kinase A (PKA) and PDE3B activation, reducing cAMP levels. Regulates cardiac contractility also by promoting beta-adrenergic receptor internalization by binding to ADRBK1 and by non-muscle tropomyosin phosphorylation. Also has serine/threonine protein kinase activity: both lipid and protein kinase activities are required for beta-adrenergic receptor endocytosis. May also have a scaffolding role in modulating cardiac contractility. Contributes to cardiac hypertrophy under pathological stress. Through simultaneous binding of PDE3B to RAPGEF3 and PIK3R6 is assembled in a signaling complex in which the PI3K gamma complex is activated by RAPGEF3 and which is involved in angiogenesis.<ref>PMID:7624799</ref> <ref>PMID:12163475</ref> <ref>PMID:15294162</ref> <ref>PMID:16094730</ref> <ref>PMID:21393242</ref> 
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==

Revision as of 23:00, 24 December 2014

Discovery of thiazolobenzoxepin PI3-kinase inhibitors that spare the PI3-kinase beta isoformDiscovery of thiazolobenzoxepin PI3-kinase inhibitors that spare the PI3-kinase beta isoform

Structural highlights

4j6i is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Gene:p110 gamma, PIK3CG (Homo sapiens)
Resources:FirstGlance, OCA, RCSB, PDBsum

Function

[PK3CG_HUMAN] Phosphoinositide-3-kinase (PI3K) that phosphorylates PtdIns(4,5)P2 (Phosphatidylinositol 4,5-bisphosphate) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 plays a key role by recruiting PH domain-containing proteins to the membrane, including AKT1 and PDPK1, activating signaling cascades involved in cell growth, survival, proliferation, motility and morphology. Links G-protein coupled receptor activation to PIP3 production. Involved in immune, inflammatory and allergic responses. Modulates leukocyte chemotaxis to inflammatory sites and in response to chemoattractant agents. May control leukocyte polarization and migration by regulating the spatial accumulation of PIP3 and by regulating the organization of F-actin formation and integrin-based adhesion at the leading edge. Controls motility of dendritic cells. Together with PIK3CD is involved in natural killer (NK) cell development and migration towards the sites of inflammation. Participates in T-lymphocyte migration. Regulates T-lymphocyte proliferation and cytokine production. Together with PIK3CD participates in T-lymphocyte development. Required for B-lymphocyte development and signaling. Together with PIK3CD participates in neutrophil respiratory burst. Together with PIK3CD is involved in neutrophil chemotaxis and extravasation. Together with PIK3CB promotes platelet aggregation and thrombosis. Regulates alpha-IIb/beta-3 integrins (ITGA2B/ ITGB3) adhesive function in platelets downstream of P2Y12 through a lipid kinase activity-independent mechanism. May have also a lipid kinase activity-dependent function in platelet aggregation. Involved in endothelial progenitor cell migration. Negative regulator of cardiac contractility. Modulates cardiac contractility by anchoring protein kinase A (PKA) and PDE3B activation, reducing cAMP levels. Regulates cardiac contractility also by promoting beta-adrenergic receptor internalization by binding to ADRBK1 and by non-muscle tropomyosin phosphorylation. Also has serine/threonine protein kinase activity: both lipid and protein kinase activities are required for beta-adrenergic receptor endocytosis. May also have a scaffolding role in modulating cardiac contractility. Contributes to cardiac hypertrophy under pathological stress. Through simultaneous binding of PDE3B to RAPGEF3 and PIK3R6 is assembled in a signaling complex in which the PI3K gamma complex is activated by RAPGEF3 and which is involved in angiogenesis.[1] [2] [3] [4] [5]

Publication Abstract from PubMed

A series of suitable five-membered heterocyclic alternatives to thiophenes within a thienobenzoxepin class of PI3-kinase (PI3K) inhibitors was discovered. Specific thiazolobenzoxepin 8-substitution was identified that increased selectivity over PI3Kbeta. PI3Kbeta-sparing compound 27 (PI3Kbeta Ki,app/PI3Kalpha Ki,app=57) demonstrated dose-dependent knockdown of pAKT, pPRAS40 and pS6RP in vivo as well as differential effects in an in vitro proliferation cell line screen compared to pan PI3K inhibitor GDC-0941. A new structure-based hypothesis for reducing inhibition of the PI3K beta isoform while maintaining activity against alpha, delta and gamma isoforms is presented.

Discovery of thiazolobenzoxepin PI3-kinase inhibitors that spare the PI3-kinase beta isoform.,Staben ST, Ndubaku C, Blaquiere N, Belvin M, Bull RJ, Dudley D, Edgar K, Gray D, Heald R, Heffron TP, Jones GE, Jones M, Kolesnikov A, Lee L, Lesnick J, Lewis C, Murray J, McLean NJ, Nonomiya J, Olivero AG, Ord R, Pang J, Price S, Prior WW, Rouge L, Salphati L, Sampath D, Wallin J, Wang L, Wei B, Weismann C, Wu P Bioorg Med Chem Lett. 2013 May 1;23(9):2606-13. doi: 10.1016/j.bmcl.2013.02.102. , Epub 2013 Mar 7. PMID:23540645[6]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Stoyanov B, Volinia S, Hanck T, Rubio I, Loubtchenkov M, Malek D, Stoyanova S, Vanhaesebroeck B, Dhand R, Nurnberg B, et al.. Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science. 1995 Aug 4;269(5224):690-3. PMID:7624799
  2. Naga Prasad SV, Laporte SA, Chamberlain D, Caron MG, Barak L, Rockman HA. Phosphoinositide 3-kinase regulates beta2-adrenergic receptor endocytosis by AP-2 recruitment to the receptor/beta-arrestin complex. J Cell Biol. 2002 Aug 5;158(3):563-75. Epub 2002 Aug 5. PMID:12163475 doi:10.1083/jcb.200202113
  3. Patrucco E, Notte A, Barberis L, Selvetella G, Maffei A, Brancaccio M, Marengo S, Russo G, Azzolino O, Rybalkin SD, Silengo L, Altruda F, Wetzker R, Wymann MP, Lembo G, Hirsch E. PI3Kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects. Cell. 2004 Aug 6;118(3):375-87. PMID:15294162 doi:10.1016/j.cell.2004.07.017
  4. Naga Prasad SV, Jayatilleke A, Madamanchi A, Rockman HA. Protein kinase activity of phosphoinositide 3-kinase regulates beta-adrenergic receptor endocytosis. Nat Cell Biol. 2005 Aug;7(8):785-96. PMID:16094730
  5. Wilson LS, Baillie GS, Pritchard LM, Umana B, Terrin A, Zaccolo M, Houslay MD, Maurice DH. A phosphodiesterase 3B-based signaling complex integrates exchange protein activated by cAMP 1 and phosphatidylinositol 3-kinase signals in human arterial endothelial cells. J Biol Chem. 2011 May 6;286(18):16285-96. doi: 10.1074/jbc.M110.217026. Epub 2011, Mar 10. PMID:21393242 doi:10.1074/jbc.M110.217026
  6. Staben ST, Ndubaku C, Blaquiere N, Belvin M, Bull RJ, Dudley D, Edgar K, Gray D, Heald R, Heffron TP, Jones GE, Jones M, Kolesnikov A, Lee L, Lesnick J, Lewis C, Murray J, McLean NJ, Nonomiya J, Olivero AG, Ord R, Pang J, Price S, Prior WW, Rouge L, Salphati L, Sampath D, Wallin J, Wang L, Wei B, Weismann C, Wu P. Discovery of thiazolobenzoxepin PI3-kinase inhibitors that spare the PI3-kinase beta isoform. Bioorg Med Chem Lett. 2013 May 1;23(9):2606-13. doi: 10.1016/j.bmcl.2013.02.102. , Epub 2013 Mar 7. PMID:23540645 doi:10.1016/j.bmcl.2013.02.102

4j6i, resolution 2.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA