3sv5: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
{{STRUCTURE_3sv5|  PDB=3sv5  |  SCENE=  }}
==Engineered medium-affinity halide-binding protein derived from YFP: iodide complex==
===Engineered medium-affinity halide-binding protein derived from YFP: iodide complex===
<StructureSection load='3sv5' size='340' side='right' caption='[[3sv5]], [[Resolution|resolution]] 1.53&Aring;' scene=''>
{{ABSTRACT_PUBMED_24107961}}
== Structural highlights ==
<table><tr><td colspan='2'>[[3sv5]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Aequorea_victoria Aequorea victoria]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3SV5 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3SV5 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=FMT:FORMIC+ACID'>FMT</scene>, <scene name='pdbligand=IOD:IODIDE+ION'>IOD</scene></td></tr>
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CR2:{(4Z)-2-(AMINOMETHYL)-4-[(4-HYDROXYPHENYL)METHYLIDENE]-5-OXO-4,5-DIHYDRO-1H-IMIDAZOL-1-YL}ACETIC+ACID'>CR2</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3sry|3sry]], [[3ss0|3ss0]], [[3ssh|3ssh]], [[3ssk|3ssk]], [[3ssl|3ssl]], [[3ssp|3ssp]], [[3sst|3sst]], [[3ssv|3ssv]], [[3ssy|3ssy]], [[3sve|3sve]], [[3st0|3st0]], [[3svb|3svb]], [[3svc|3svc]], [[3svd|3svd]]</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GFP ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=6100 Aequorea victoria])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3sv5 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3sv5 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3sv5 RCSB], [http://www.ebi.ac.uk/pdbsum/3sv5 PDBsum]</span></td></tr>
</table>
== Function ==
[[http://www.uniprot.org/uniprot/GFP_AEQVI GFP_AEQVI]] Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin.
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
We describe an engineered fluorescent optogenetic sensor, SuperClomeleon, that robustly detects inhibitory synaptic activity in single, cultured mouse neurons by reporting intracellular chloride changes produced by exogenous GABA or inhibitory synaptic activity. Using a cell-free protein engineering automation methodology that bypasses gene cloning, we iteratively constructed, produced, and assayed hundreds of mutations in binding-site residues to identify improvements in Clomeleon, a first-generation, suboptimal sensor. Structural analysis revealed that these improvements involve halide contacts and distant side chain rearrangements. The development of optogenetic sensors that respond to neural activity enables cellular tracking of neural activity using optical, rather than electrophysiological, signals. Construction of such sensors using in vitro protein engineering establishes a powerful approach for developing new probes for brain imaging.


==Function==
Visualization of synaptic inhibition with an optogenetic sensor developed by cell-free protein engineering automation.,Grimley JS, Li L, Wang W, Wen L, Beese LS, Hellinga HW, Augustine GJ J Neurosci. 2013 Oct 9;33(41):16297-309. doi: 10.1523/JNEUROSCI.4616-11.2013. PMID:24107961<ref>PMID:24107961</ref>
[[http://www.uniprot.org/uniprot/GFP_AEQVI GFP_AEQVI]] Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin.  


==About this Structure==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
[[3sv5]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Aequorea_victoria Aequorea victoria]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3SV5 OCA].
</div>


==See Also==
==See Also==
*[[Green Fluorescent Protein|Green Fluorescent Protein]]
*[[Green Fluorescent Protein|Green Fluorescent Protein]]
 
== References ==
==Reference==
<references/>
<ref group="xtra">PMID:024107961</ref><references group="xtra"/><references/>
__TOC__
</StructureSection>
[[Category: Aequorea victoria]]
[[Category: Aequorea victoria]]
[[Category: Beese, L S.]]
[[Category: Beese, L S]]
[[Category: Grimley, J S.]]
[[Category: Grimley, J S]]
[[Category: Hellinga, H W.]]
[[Category: Hellinga, H W]]
[[Category: Wang, W.]]
[[Category: Wang, W]]
[[Category: Beta barrel]]
[[Category: Beta barrel]]
[[Category: Halide binding protein]]
[[Category: Halide binding protein]]

Revision as of 22:35, 24 December 2014

Engineered medium-affinity halide-binding protein derived from YFP: iodide complexEngineered medium-affinity halide-binding protein derived from YFP: iodide complex

Structural highlights

3sv5 is a 1 chain structure with sequence from Aequorea victoria. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, ,
NonStd Res:
Gene:GFP (Aequorea victoria)
Resources:FirstGlance, OCA, RCSB, PDBsum

Function

[GFP_AEQVI] Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin.

Publication Abstract from PubMed

We describe an engineered fluorescent optogenetic sensor, SuperClomeleon, that robustly detects inhibitory synaptic activity in single, cultured mouse neurons by reporting intracellular chloride changes produced by exogenous GABA or inhibitory synaptic activity. Using a cell-free protein engineering automation methodology that bypasses gene cloning, we iteratively constructed, produced, and assayed hundreds of mutations in binding-site residues to identify improvements in Clomeleon, a first-generation, suboptimal sensor. Structural analysis revealed that these improvements involve halide contacts and distant side chain rearrangements. The development of optogenetic sensors that respond to neural activity enables cellular tracking of neural activity using optical, rather than electrophysiological, signals. Construction of such sensors using in vitro protein engineering establishes a powerful approach for developing new probes for brain imaging.

Visualization of synaptic inhibition with an optogenetic sensor developed by cell-free protein engineering automation.,Grimley JS, Li L, Wang W, Wen L, Beese LS, Hellinga HW, Augustine GJ J Neurosci. 2013 Oct 9;33(41):16297-309. doi: 10.1523/JNEUROSCI.4616-11.2013. PMID:24107961[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Grimley JS, Li L, Wang W, Wen L, Beese LS, Hellinga HW, Augustine GJ. Visualization of synaptic inhibition with an optogenetic sensor developed by cell-free protein engineering automation. J Neurosci. 2013 Oct 9;33(41):16297-309. doi: 10.1523/JNEUROSCI.4616-11.2013. PMID:24107961 doi:http://dx.doi.org/10.1523/JNEUROSCI.4616-11.2013

3sv5, resolution 1.53Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA