2qmw: Difference between revisions
No edit summary |
No edit summary |
||
Line 31: | Line 31: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Staphylococcus aureus subsp. aureus]] | [[Category: Staphylococcus aureus subsp. aureus]] | ||
[[Category: Gu, M | [[Category: Gu, M]] | ||
[[Category: Joachimiak, A | [[Category: Joachimiak, A]] | ||
[[Category: Li, H | [[Category: Li, H]] | ||
[[Category: | [[Category: Structural genomic]] | ||
[[Category: Tan, K | [[Category: Tan, K]] | ||
[[Category: Zhang, R | [[Category: Zhang, R]] | ||
[[Category: Apc85812]] | [[Category: Apc85812]] | ||
[[Category: Mcsg]] | [[Category: Mcsg]] | ||
[[Category: | [[Category: PSI, Protein structure initiative]] | ||
[[Category: Staphylococcus aureus subsp. aureus mu50]] | [[Category: Staphylococcus aureus subsp. aureus mu50]] | ||
[[Category: Unknown function]] | [[Category: Unknown function]] |
Revision as of 11:38, 24 December 2014
The crystal structure of the prephenate dehydratase (PDT) from Staphylococcus aureus subsp. aureus Mu50The crystal structure of the prephenate dehydratase (PDT) from Staphylococcus aureus subsp. aureus Mu50
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe enzyme prephenate dehydratase (PDT) converts prephenate to phenylpyruvate in L-phenylalanine biosynthesis. PDT is allosterically regulated by L-Phe and other amino acids. We report the first crystal structures of PDT from Staphylococcus aureus in a relaxed (R) state and PDT from Chlorobium tepidum in a tense (T) state. The two enzymes show low sequence identity (27.3%) but the same prototypic architecture and domain organization. Both enzymes are tetramers (dimer of dimers) in crystal and solution while a PDT dimer can be regarded as a basic catalytic unit. The N-terminal PDT domain consists of two similar subdomains with a cleft in between, which hosts the highly conserved active site. In one PDT dimer two clefts are aligned to form an extended active site across the dimer interface. Similarly at the interface two ACT regulatory domains create two highly conserved pockets. Upon binding of the L-Phe inside the pockets, PDT transits from an open to a closed conformation. Structures of open (R) and close (T) states of prephenate dehydratase (PDT)--implication of allosteric regulation by L-phenylalanine.,Tan K, Li H, Zhang R, Gu M, Clancy ST, Joachimiak A J Struct Biol. 2008 Apr;162(1):94-107. Epub 2007 Nov 29. PMID:18171624[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|