1aqx: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 8: Line 8:
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1aqx FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1aqx OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1aqx RCSB], [http://www.ebi.ac.uk/pdbsum/1aqx PDBsum]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1aqx FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1aqx OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1aqx RCSB], [http://www.ebi.ac.uk/pdbsum/1aqx PDBsum]</span></td></tr>
</table>
</table>
== Function ==
[[http://www.uniprot.org/uniprot/GSTP1_HUMAN GSTP1_HUMAN]] Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles. Regulates negatively CDK5 activity via p25/p35 translocation to prevent neurodegeneration.<ref>PMID:21668448</ref> 
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]

Revision as of 10:01, 24 December 2014

GLUTATHIONE S-TRANSFERASE IN COMPLEX WITH MEISENHEIMER COMPLEXGLUTATHIONE S-TRANSFERASE IN COMPLEX WITH MEISENHEIMER COMPLEX

Structural highlights

1aqx is a 4 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Gene:GTP_HUMAN (Homo sapiens)
Activity:Glutathione transferase, with EC number 2.5.1.18
Resources:FirstGlance, OCA, RCSB, PDBsum

Function

[GSTP1_HUMAN] Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles. Regulates negatively CDK5 activity via p25/p35 translocation to prevent neurodegeneration.[1]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

BACKGROUND: Glutathione S-transferases (GSTs) are detoxification enzymes, found in all aerobic organisms, which catalyse the conjugation of glutathione with a wide range of hydrophobic electrophilic substrates, thereby protecting the cell from serious damage caused by electrophilic compounds. GSTs are classified into five distinct classes (alpha, mu, pi, sigma and theta) by their substrate specificity and primary structure. Human GSTs are of interest because tumour cells show increased levels of expression of single classes of GSTs, which leads to drug resistance. Structural differences between classes of GST can therefore be utilised to develop new anti-cancer drugs. Many mutational and structural studies have been carried out on the mu and alpha classes of GST to elucidate the reaction mechanism, whereas knowledge about the pi class is still limited. RESULTS: We have solved the structures of the pi class GST hP1-1 in complex with its substrate, glutathione, a transition-state complex, the Meisenheimer complex, and an inhibitor, S-(rho-bromobenzyl)-glutathione, and refined them to resolutions of 1.8 A, 2.0 A and 1.9 A, respectively. All ligand molecules are well-defined in the electron density. In all three structures, an additionally bound N-morpholino-ethansulfonic acid molecule from the buffer solution was found. CONCLUSIONS: In the structure of the GST-glutathione complex, two conserved water molecules are observed, one of which hydrogen bonds directly to the sulphur atom of glutathione and the other forms hydrogen bonds with residues around the glutathione-binding site. These water molecules are absent from the structure of the Meisenheimer complex bound to GST, implicating that deprotonation of the cysteine occurs during formation of the ternary complex which involves expulsion of the inner bound water molecule. The comparison of our structures with known mu class GST structures show differences in the location of the electrophile-binding site (H-site), explaining the different substrate specificities of the two classes. Fluorescence measurements are in agreement with the position of the N-morpholino-ethansulfonic acid, close to Trp28, identifying a possible ligandin-substrate binding site.

Structures of class pi glutathione S-transferase from human placenta in complex with substrate, transition-state analogue and inhibitor.,Prade L, Huber R, Manoharan TH, Fahl WE, Reuter W Structure. 1997 Oct 15;5(10):1287-95. PMID:9351803[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Sun KH, Chang KH, Clawson S, Ghosh S, Mirzaei H, Regnier F, Shah K. Glutathione-S-transferase P1 is a critical regulator of Cdk5 kinase activity. J Neurochem. 2011 Sep;118(5):902-14. doi: 10.1111/j.1471-4159.2011.07343.x. Epub , 2011 Jul 8. PMID:21668448 doi:10.1111/j.1471-4159.2011.07343.x
  2. Prade L, Huber R, Manoharan TH, Fahl WE, Reuter W. Structures of class pi glutathione S-transferase from human placenta in complex with substrate, transition-state analogue and inhibitor. Structure. 1997 Oct 15;5(10):1287-95. PMID:9351803

1aqx, resolution 2.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA