1gq3: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1gq3]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1GQ3 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1GQ3 FirstGlance]. <br> | <table><tr><td colspan='2'>[[1gq3]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1GQ3 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1GQ3 FirstGlance]. <br> | ||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>< | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene></td></tr> | ||
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1acm|1acm]], [[1at1|1at1]], [[1d09|1d09]], [[1ekx|1ekx]], [[1ezz|1ezz]], [[1f1b|1f1b]], [[1i5o|1i5o]], [[1nbe|1nbe]], [[1raa|1raa]], [[1rab|1rab]], [[1rac|1rac]], [[1rad|1rad]], [[1rae|1rae]], [[1raf|1raf]], [[1rag|1rag]], [[1rah|1rah]], [[1rai|1rai]], [[2at1|2at1]], [[3at1|3at1]], [[3csu|3csu]], [[4at1|4at1]], [[5at1|5at1]], [[6at1|6at1]], [[7at1|7at1]], [[8at1|8at1]], [[8atc|8atc]], [[9atc|9atc]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1acm|1acm]], [[1at1|1at1]], [[1d09|1d09]], [[1ekx|1ekx]], [[1ezz|1ezz]], [[1f1b|1f1b]], [[1i5o|1i5o]], [[1nbe|1nbe]], [[1raa|1raa]], [[1rab|1rab]], [[1rac|1rac]], [[1rad|1rad]], [[1rae|1rae]], [[1raf|1raf]], [[1rag|1rag]], [[1rah|1rah]], [[1rai|1rai]], [[2at1|2at1]], [[3at1|3at1]], [[3csu|3csu]], [[4at1|4at1]], [[5at1|5at1]], [[6at1|6at1]], [[7at1|7at1]], [[8at1|8at1]], [[8atc|8atc]], [[9atc|9atc]]</td></tr> | ||
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">PYRB-R105A ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 Escherichia coli])</td></tr> | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">PYRB-R105A ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 Escherichia coli])</td></tr> | ||
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Aspartate_carbamoyltransferase Aspartate carbamoyltransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.1.3.2 2.1.3.2] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Aspartate_carbamoyltransferase Aspartate carbamoyltransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.1.3.2 2.1.3.2] </span></td></tr> | ||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1gq3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1gq3 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1gq3 RCSB], [http://www.ebi.ac.uk/pdbsum/1gq3 PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1gq3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1gq3 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1gq3 RCSB], [http://www.ebi.ac.uk/pdbsum/1gq3 PDBsum]</span></td></tr> | ||
<table> | </table> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 33: | Line 33: | ||
[[Category: Aspartate carbamoyltransferase]] | [[Category: Aspartate carbamoyltransferase]] | ||
[[Category: Escherichia coli]] | [[Category: Escherichia coli]] | ||
[[Category: Alber, T | [[Category: Alber, T]] | ||
[[Category: Beernink, P T | [[Category: Beernink, P T]] | ||
[[Category: Endrizzi, J A | [[Category: Endrizzi, J A]] | ||
[[Category: Schachman, H K | [[Category: Schachman, H K]] | ||
[[Category: Transferase]] | [[Category: Transferase]] |
Revision as of 01:42, 23 December 2014
STRUCTURE OF THE R105A MUTANT CATALYTIC TRIMER OF ESCHERICHIA COLI ASPARTATE TRANSCARBAMOYLASE AT 2.0-A RESOLUTIONSTRUCTURE OF THE R105A MUTANT CATALYTIC TRIMER OF ESCHERICHIA COLI ASPARTATE TRANSCARBAMOYLASE AT 2.0-A RESOLUTION
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe lack of knowledge of the three-dimensional structure of the trimeric, catalytic (C) subunit of aspartate transcarbamoylase (ATCase) has impeded understanding of the allosteric regulation of this enzyme and left unresolved the mechanism by which the active, unregulated C trimers are inactivated on incorporation into the unliganded (taut or T state) holoenzyme. Surprisingly, the isolated C trimer, based on the 1.9-A crystal structure reported here, resembles more closely the trimers in the T state enzyme than in the holoenzyme:bisubstrate-analog complex, which has been considered as the active, relaxed (R) state enzyme. Unlike the C trimer in either the T state or bisubstrate-analog-bound holoenzyme, the isolated C trimer lacks 3-fold symmetry, and the active sites are partially disordered. The flexibility of the C trimer, contrasted to the highly constrained T state ATCase, suggests that regulation of the holoenzyme involves modulating the potential for conformational changes essential for catalysis. Large differences in structure between the active C trimer and the holoenzyme:bisubstrate-analog complex call into question the view that this complex represents the activated R state of ATCase. Assessment of the allosteric mechanism of aspartate transcarbamoylase based on the crystalline structure of the unregulated catalytic subunit.,Beernink PT, Endrizzi JA, Alber T, Schachman HK Proc Natl Acad Sci U S A. 1999 May 11;96(10):5388-93. PMID:10318893[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References |
|