1dxv: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1dxv]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1DXV OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1DXV FirstGlance]. <br> | <table><tr><td colspan='2'>[[1dxv]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1DXV OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1DXV FirstGlance]. <br> | ||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>< | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | ||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1dxv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1dxv OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1dxv RCSB], [http://www.ebi.ac.uk/pdbsum/1dxv PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1dxv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1dxv OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1dxv RCSB], [http://www.ebi.ac.uk/pdbsum/1dxv PDBsum]</span></td></tr> | ||
<table> | </table> | ||
== Disease == | == Disease == | ||
[[http://www.uniprot.org/uniprot/HBB_HUMAN HBB_HUMAN]] Defects in HBB may be a cause of Heinz body anemias (HEIBAN) [MIM:[http://omim.org/entry/140700 140700]]. This is a form of non-spherocytic hemolytic anemia of Dacie type 1. After splenectomy, which has little benefit, basophilic inclusions called Heinz bodies are demonstrable in the erythrocytes. Before splenectomy, diffuse or punctate basophilia may be evident. Most of these cases are probably instances of hemoglobinopathy. The hemoglobin demonstrates heat lability. Heinz bodies are observed also with the Ivemark syndrome (asplenia with cardiovascular anomalies) and with glutathione peroxidase deficiency.<ref>PMID:186485</ref> <ref>PMID:6259091</ref> <ref>PMID:2599881</ref> <ref>PMID:8704193</ref> Defects in HBB are the cause of beta-thalassemia (B-THAL) [MIM:[http://omim.org/entry/613985 613985]]. A form of thalassemia. Thalassemias are common monogenic diseases occurring mostly in Mediterranean and Southeast Asian populations. The hallmark of beta-thalassemia is an imbalance in globin-chain production in the adult HbA molecule. Absence of beta chain causes beta(0)-thalassemia, while reduced amounts of detectable beta globin causes beta(+)-thalassemia. In the severe forms of beta-thalassemia, the excess alpha globin chains accumulate in the developing erythroid precursors in the marrow. Their deposition leads to a vast increase in erythroid apoptosis that in turn causes ineffective erythropoiesis and severe microcytic hypochromic anemia. Clinically, beta-thalassemia is divided into thalassemia major which is transfusion dependent, thalassemia intermedia (of intermediate severity), and thalassemia minor that is asymptomatic.<ref>PMID:1971109</ref> Defects in HBB are the cause of sickle cell anemia (SKCA) [MIM:[http://omim.org/entry/603903 603903]]; also known as sickle cell disease. Sickle cell anemia is characterized by abnormally shaped red cells resulting in chronic anemia and periodic episodes of pain, serious infections and damage to vital organs. Normal red blood cells are round and flexible and flow easily through blood vessels, but in sickle cell anemia, the abnormal hemoglobin (called Hb S) causes red blood cells to become stiff. They are C-shaped and resembles a sickle. These stiffer red blood cells can led to microvascular occlusion thus cutting off the blood supply to nearby tissues. Defects in HBB are the cause of beta-thalassemia dominant inclusion body type (B-THALIB) [MIM:[http://omim.org/entry/603902 603902]]. An autosomal dominant form of beta thalassemia characterized by moderate anemia, lifelong jaundice, cholelithiasis and splenomegaly, marked morphologic changes in the red cells, erythroid hyperplasia of the bone marrow with increased numbers of multinucleate red cell precursors, and the presence of large inclusion bodies in the normoblasts, both in the marrow and in the peripheral blood after splenectomy.<ref>PMID:1971109</ref> | [[http://www.uniprot.org/uniprot/HBB_HUMAN HBB_HUMAN]] Defects in HBB may be a cause of Heinz body anemias (HEIBAN) [MIM:[http://omim.org/entry/140700 140700]]. This is a form of non-spherocytic hemolytic anemia of Dacie type 1. After splenectomy, which has little benefit, basophilic inclusions called Heinz bodies are demonstrable in the erythrocytes. Before splenectomy, diffuse or punctate basophilia may be evident. Most of these cases are probably instances of hemoglobinopathy. The hemoglobin demonstrates heat lability. Heinz bodies are observed also with the Ivemark syndrome (asplenia with cardiovascular anomalies) and with glutathione peroxidase deficiency.<ref>PMID:186485</ref> <ref>PMID:6259091</ref> <ref>PMID:2599881</ref> <ref>PMID:8704193</ref> Defects in HBB are the cause of beta-thalassemia (B-THAL) [MIM:[http://omim.org/entry/613985 613985]]. A form of thalassemia. Thalassemias are common monogenic diseases occurring mostly in Mediterranean and Southeast Asian populations. The hallmark of beta-thalassemia is an imbalance in globin-chain production in the adult HbA molecule. Absence of beta chain causes beta(0)-thalassemia, while reduced amounts of detectable beta globin causes beta(+)-thalassemia. In the severe forms of beta-thalassemia, the excess alpha globin chains accumulate in the developing erythroid precursors in the marrow. Their deposition leads to a vast increase in erythroid apoptosis that in turn causes ineffective erythropoiesis and severe microcytic hypochromic anemia. Clinically, beta-thalassemia is divided into thalassemia major which is transfusion dependent, thalassemia intermedia (of intermediate severity), and thalassemia minor that is asymptomatic.<ref>PMID:1971109</ref> Defects in HBB are the cause of sickle cell anemia (SKCA) [MIM:[http://omim.org/entry/603903 603903]]; also known as sickle cell disease. Sickle cell anemia is characterized by abnormally shaped red cells resulting in chronic anemia and periodic episodes of pain, serious infections and damage to vital organs. Normal red blood cells are round and flexible and flow easily through blood vessels, but in sickle cell anemia, the abnormal hemoglobin (called Hb S) causes red blood cells to become stiff. They are C-shaped and resembles a sickle. These stiffer red blood cells can led to microvascular occlusion thus cutting off the blood supply to nearby tissues. Defects in HBB are the cause of beta-thalassemia dominant inclusion body type (B-THALIB) [MIM:[http://omim.org/entry/603902 603902]]. An autosomal dominant form of beta thalassemia characterized by moderate anemia, lifelong jaundice, cholelithiasis and splenomegaly, marked morphologic changes in the red cells, erythroid hyperplasia of the bone marrow with increased numbers of multinucleate red cell precursors, and the presence of large inclusion bodies in the normoblasts, both in the marrow and in the peripheral blood after splenectomy.<ref>PMID:1971109</ref> | ||
Line 36: | Line 36: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: Arnone, A | [[Category: Arnone, A]] | ||
[[Category: Kavanaugh, J S | [[Category: Kavanaugh, J S]] | ||
[[Category: Oxygen transport]] | [[Category: Oxygen transport]] |
Revision as of 00:24, 23 December 2014
HIGH-RESOLUTION X-RAY STUDY OF DEOXY RECOMBINANT HUMAN HEMOGLOBINS SYNTHESIZED FROM BETA-GLOBINS HAVING MUTATED AMINO TERMINIHIGH-RESOLUTION X-RAY STUDY OF DEOXY RECOMBINANT HUMAN HEMOGLOBINS SYNTHESIZED FROM BETA-GLOBINS HAVING MUTATED AMINO TERMINI
Structural highlights
Disease[HBB_HUMAN] Defects in HBB may be a cause of Heinz body anemias (HEIBAN) [MIM:140700]. This is a form of non-spherocytic hemolytic anemia of Dacie type 1. After splenectomy, which has little benefit, basophilic inclusions called Heinz bodies are demonstrable in the erythrocytes. Before splenectomy, diffuse or punctate basophilia may be evident. Most of these cases are probably instances of hemoglobinopathy. The hemoglobin demonstrates heat lability. Heinz bodies are observed also with the Ivemark syndrome (asplenia with cardiovascular anomalies) and with glutathione peroxidase deficiency.[1] [2] [3] [4] Defects in HBB are the cause of beta-thalassemia (B-THAL) [MIM:613985]. A form of thalassemia. Thalassemias are common monogenic diseases occurring mostly in Mediterranean and Southeast Asian populations. The hallmark of beta-thalassemia is an imbalance in globin-chain production in the adult HbA molecule. Absence of beta chain causes beta(0)-thalassemia, while reduced amounts of detectable beta globin causes beta(+)-thalassemia. In the severe forms of beta-thalassemia, the excess alpha globin chains accumulate in the developing erythroid precursors in the marrow. Their deposition leads to a vast increase in erythroid apoptosis that in turn causes ineffective erythropoiesis and severe microcytic hypochromic anemia. Clinically, beta-thalassemia is divided into thalassemia major which is transfusion dependent, thalassemia intermedia (of intermediate severity), and thalassemia minor that is asymptomatic.[5] Defects in HBB are the cause of sickle cell anemia (SKCA) [MIM:603903]; also known as sickle cell disease. Sickle cell anemia is characterized by abnormally shaped red cells resulting in chronic anemia and periodic episodes of pain, serious infections and damage to vital organs. Normal red blood cells are round and flexible and flow easily through blood vessels, but in sickle cell anemia, the abnormal hemoglobin (called Hb S) causes red blood cells to become stiff. They are C-shaped and resembles a sickle. These stiffer red blood cells can led to microvascular occlusion thus cutting off the blood supply to nearby tissues. Defects in HBB are the cause of beta-thalassemia dominant inclusion body type (B-THALIB) [MIM:603902]. An autosomal dominant form of beta thalassemia characterized by moderate anemia, lifelong jaundice, cholelithiasis and splenomegaly, marked morphologic changes in the red cells, erythroid hyperplasia of the bone marrow with increased numbers of multinucleate red cell precursors, and the presence of large inclusion bodies in the normoblasts, both in the marrow and in the peripheral blood after splenectomy.[6] Function[HBB_HUMAN] Involved in oxygen transport from the lung to the various peripheral tissues.[7] LVV-hemorphin-7 potentiates the activity of bradykinin, causing a decrease in blood pressure.[8] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe crystal structures of three mutant hemoglobins reconstituted from recombinant beta chains and authentic human alpha chains have been determined in the deoxy state at 1.8-A resolution. The primary structures of the mutant hemoglobins differ at the beta-chain amino terminus. One mutant, beta Met, is characterized by the addition of a methionine at the amino terminus. The other two hemoglobins are characterized by substitution of Val 1 beta with either a methionine, beta V1M, or an alanine, beta V1A. All the mutation-induced structural perturbations are small intrasubunit changes that are localized to the immediate vicinity of the beta-chain amino terminus. In the beta Met and beta V1A mutants, the mobility of the beta-chain amino terminus increases and the electron density of an associated inorganic anion is decreased. In contrast, the beta-chain amino terminus of the beta V1M mutant becomes less mobile, and the inorganic anion binds with increased affinity. These structural differences can be correlated with functional data for the mutant hemoglobins [Doyle, M. L., Lew, G., DeYoung, A., Kwiatkowski, L., Noble, R. W., & Ackers, G. K. (1992) Biochemistry preceding paper is this issue] as well as with the properties of ruminant hemoglobins and a mechanism [Perutz, M., & Imai, K. (1980) J. Mol. Biol. 136, 183-191] that relates the intrasubunit interactions of the beta-chain amino terminus to changes in oxygen affinity. Since the structures of the mutant deoxyhemoglobins show only subtle differences from the structure of deoxyhemoglobin A, it is concluded that any of the three hemoglobins could probably function as a surrogate for hemoglobin A.(ABSTRACT TRUNCATED AT 250 WORDS) High-resolution X-ray study of deoxy recombinant human hemoglobins synthesized from beta-globins having mutated amino termini.,Kavanaugh JS, Rogers PH, Arnone A Biochemistry. 1992 Sep 15;31(36):8640-7. PMID:1390648[9] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|