1f50: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[1f50]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Halobacterium_salinarum Halobacterium salinarum]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1F50 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1F50 FirstGlance]. <br> | <table><tr><td colspan='2'>[[1f50]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Halobacterium_salinarum Halobacterium salinarum]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1F50 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1F50 FirstGlance]. <br> | ||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=LI1:1-[2,6,10.14-TETRAMETHYL-HEXADECAN-16-YL]-2-[2,10,14-TRIMETHYLHEXADECAN-16-YL]GLYCEROL'>LI1</scene>, <scene name='pdbligand=RET:RETINAL'>RET</scene>, <scene name='pdbligand=SQU:2,10,23-TRIMETHYL-TETRACOSANE'>SQU</scene>< | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=LI1:1-[2,6,10.14-TETRAMETHYL-HEXADECAN-16-YL]-2-[2,10,14-TRIMETHYLHEXADECAN-16-YL]GLYCEROL'>LI1</scene>, <scene name='pdbligand=RET:RETINAL'>RET</scene>, <scene name='pdbligand=SQU:2,10,23-TRIMETHYL-TETRACOSANE'>SQU</scene></td></tr> | ||
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1c3w|1c3w]], [[1c8r|1c8r]], [[1c8s|1c8s]], [[1f4z|1f4z]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1c3w|1c3w]], [[1c8r|1c8r]], [[1c8s|1c8s]], [[1f4z|1f4z]]</td></tr> | ||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1f50 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1f50 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1f50 RCSB], [http://www.ebi.ac.uk/pdbsum/1f50 PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1f50 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1f50 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1f50 RCSB], [http://www.ebi.ac.uk/pdbsum/1f50 PDBsum]</span></td></tr> | ||
<table> | </table> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 33: | Line 33: | ||
</StructureSection> | </StructureSection> | ||
[[Category: Halobacterium salinarum]] | [[Category: Halobacterium salinarum]] | ||
[[Category: Cartailler, J P | [[Category: Cartailler, J P]] | ||
[[Category: Lanyi, J K | [[Category: Lanyi, J K]] | ||
[[Category: Luecke, H | [[Category: Luecke, H]] | ||
[[Category: Needleman, R | [[Category: Needleman, R]] | ||
[[Category: Richter, H T | [[Category: Richter, H T]] | ||
[[Category: Rosengarth, A | [[Category: Rosengarth, A]] | ||
[[Category: Schobert, B | [[Category: Schobert, B]] | ||
[[Category: 7-transmembrane]] | [[Category: 7-transmembrane]] | ||
[[Category: E204q mutant ground state]] | [[Category: E204q mutant ground state]] |
Revision as of 23:31, 22 December 2014
BACTERIORHODOPSIN-BR STATE OF THE E204Q MUTANT AT 1.7 ANGSTROM RESOLUTIONBACTERIORHODOPSIN-BR STATE OF THE E204Q MUTANT AT 1.7 ANGSTROM RESOLUTION
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedIn order to understand how isomerization of the retinal drives unidirectional transmembrane ion transport in bacteriorhodopsin, we determined the atomic structures of the BR state and M photointermediate of the E204Q mutant, to 1.7 and 1.8 A resolution, respectively. Comparison of this M, in which proton release to the extracellular surface is blocked, with the previously determined M in the D96N mutant indicates that the changes in the extracellular region are initiated by changes in the electrostatic interactions of the retinal Schiff base with Asp85 and Asp212, but those on the cytoplasmic side originate from steric conflict of the 13-methyl retinal group with Trp182 and distortion of the pi-bulge of helix G. The structural changes suggest that protonation of Asp85 initiates a cascade of atomic displacements in the extracellular region that cause release of a proton to the surface. The progressive relaxation of the strained 13-cis retinal chain with deprotonated Schiff base, in turn, initiates atomic displacements in the cytoplasmic region that cause the intercalation of a hydrogen-bonded water molecule between Thr46 and Asp96. This accounts for the lowering of the pK(a) of Asp96, which then reprotonates the Schiff base via a newly formed chain of water molecules that is extending toward the Schiff base. Coupling photoisomerization of retinal to directional transport in bacteriorhodopsin.,Luecke H, Schobert B, Cartailler JP, Richter HT, Rosengarth A, Needleman R, Lanyi JK J Mol Biol. 2000 Jul 28;300(5):1237-55. PMID:10903866[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|