4jsv: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==mTOR kinase structure, mechanism and regulation.== | |||
=== | <StructureSection load='4jsv' size='340' side='right' caption='[[4jsv]], [[Resolution|resolution]] 3.50Å' scene=''> | ||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[4jsv]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4JSV OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4JSV FirstGlance]. <br> | |||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=MGF:TRIFLUOROMAGNESATE'>MGF</scene></td></tr> | |||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4jsn|4jsn]], [[4jsp|4jsp]], [[4jsx|4jsx]], [[4jt5|4jt5]]</td></tr> | |||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">FRAP, FRAP1, FRAP2, MTOR, RAFT1, RAPT1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens]), GBL, LST8, MLST8 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])</td></tr> | |||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Non-specific_serine/threonine_protein_kinase Non-specific serine/threonine protein kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.11.1 2.7.11.1] </span></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4jsv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4jsv OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4jsv RCSB], [http://www.ebi.ac.uk/pdbsum/4jsv PDBsum]</span></td></tr> | |||
</table> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The mammalian target of rapamycin (mTOR), a phosphoinositide 3-kinase-related protein kinase, controls cell growth in response to nutrients and growth factors and is frequently deregulated in cancer. Here we report co-crystal structures of a complex of truncated mTOR and mammalian lethal with SEC13 protein 8 (mLST8) with an ATP transition state mimic and with ATP-site inhibitors. The structures reveal an intrinsically active kinase conformation, with catalytic residues and a catalytic mechanism remarkably similar to canonical protein kinases. The active site is highly recessed owing to the FKBP12-rapamycin-binding (FRB) domain and an inhibitory helix protruding from the catalytic cleft. mTOR-activating mutations map to the structural framework that holds these elements in place, indicating that the kinase is controlled by restricted access. In vitro biochemistry shows that the FRB domain acts as a gatekeeper, with its rapamycin-binding site interacting with substrates to grant them access to the restricted active site. Rapamycin-FKBP12 inhibits the kinase by directly blocking substrate recruitment and by further restricting active-site access. The structures also reveal active-site residues and conformational changes that underlie inhibitor potency and specificity. | |||
mTOR kinase structure, mechanism and regulation.,Yang H, Rudge DG, Koos JD, Vaidialingam B, Yang HJ, Pavletich NP Nature. 2013 May 9;497(7448):217-23. doi: 10.1038/nature12122. Epub 2013 May 1. PMID:23636326<ref>PMID:23636326</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
== | ==See Also== | ||
*[[Serine/threonine protein kinase|Serine/threonine protein kinase]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: Non-specific serine/threonine protein kinase]] | [[Category: Non-specific serine/threonine protein kinase]] | ||
[[Category: Pavletich, N P | [[Category: Pavletich, N P]] | ||
[[Category: Yang, H | [[Category: Yang, H]] | ||
[[Category: Kinase]] | [[Category: Kinase]] | ||
[[Category: Transferase]] | [[Category: Transferase]] |
Revision as of 17:35, 21 December 2014
mTOR kinase structure, mechanism and regulation.mTOR kinase structure, mechanism and regulation.
Structural highlights
Publication Abstract from PubMedThe mammalian target of rapamycin (mTOR), a phosphoinositide 3-kinase-related protein kinase, controls cell growth in response to nutrients and growth factors and is frequently deregulated in cancer. Here we report co-crystal structures of a complex of truncated mTOR and mammalian lethal with SEC13 protein 8 (mLST8) with an ATP transition state mimic and with ATP-site inhibitors. The structures reveal an intrinsically active kinase conformation, with catalytic residues and a catalytic mechanism remarkably similar to canonical protein kinases. The active site is highly recessed owing to the FKBP12-rapamycin-binding (FRB) domain and an inhibitory helix protruding from the catalytic cleft. mTOR-activating mutations map to the structural framework that holds these elements in place, indicating that the kinase is controlled by restricted access. In vitro biochemistry shows that the FRB domain acts as a gatekeeper, with its rapamycin-binding site interacting with substrates to grant them access to the restricted active site. Rapamycin-FKBP12 inhibits the kinase by directly blocking substrate recruitment and by further restricting active-site access. The structures also reveal active-site residues and conformational changes that underlie inhibitor potency and specificity. mTOR kinase structure, mechanism and regulation.,Yang H, Rudge DG, Koos JD, Vaidialingam B, Yang HJ, Pavletich NP Nature. 2013 May 9;497(7448):217-23. doi: 10.1038/nature12122. Epub 2013 May 1. PMID:23636326[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|