3v6s: Difference between revisions

No edit summary
No edit summary
Line 1: Line 1:
{{STRUCTURE_3v6s|  PDB=3v6s  |  SCENE=  }}
==Discovery of potent and selective covalent inhibitors of JNK==
===Discovery of potent and selective covalent inhibitors of JNK===
<StructureSection load='3v6s' size='340' side='right' caption='[[3v6s]], [[Resolution|resolution]] 2.97&Aring;' scene=''>
{{ABSTRACT_PUBMED_22284361}}
== Structural highlights ==
 
<table><tr><td colspan='2'>[[3v6s]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3V6S OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3V6S FirstGlance]. <br>
==Disease==
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=0F0:3-{[4-(DIMETHYLAMINO)BUTANOYL]AMINO}-N-(4-{[4-(PYRIDIN-3-YL)PYRIMIDIN-2-YL]AMINO}PHENYL)BENZAMIDE'>0F0</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3v6r|3v6r]]</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">MAPK10, JNK3, JNK3A, PRKM10, SAPK1B ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Mitogen-activated_protein_kinase Mitogen-activated protein kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.11.24 2.7.11.24] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3v6s FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3v6s OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3v6s RCSB], [http://www.ebi.ac.uk/pdbsum/3v6s PDBsum]</span></td></tr>
</table>
== Disease ==
[[http://www.uniprot.org/uniprot/MK10_HUMAN MK10_HUMAN]] Defects in MAPK10 are a cause of epileptic encephalopathy Lennox-Gastaut type (EELG) [MIM:[http://omim.org/entry/606369 606369]]. Epileptic encephalopathies of the Lennox-Gastaut group are childhood epileptic disorders characterized by severe psychomotor delay and seizures. Note=A chromosomal aberration involving MAPK10 has been found in a single patient. Translocation t(Y;4)(q11.2;q21) which causes MAPK10 truncation.  
[[http://www.uniprot.org/uniprot/MK10_HUMAN MK10_HUMAN]] Defects in MAPK10 are a cause of epileptic encephalopathy Lennox-Gastaut type (EELG) [MIM:[http://omim.org/entry/606369 606369]]. Epileptic encephalopathies of the Lennox-Gastaut group are childhood epileptic disorders characterized by severe psychomotor delay and seizures. Note=A chromosomal aberration involving MAPK10 has been found in a single patient. Translocation t(Y;4)(q11.2;q21) which causes MAPK10 truncation.  
== Function ==
[[http://www.uniprot.org/uniprot/MK10_HUMAN MK10_HUMAN]] Serine/threonine-protein kinase involved in various processes such as neuronal proliferation, differentiation, migration and programmed cell death. Extracellular stimuli such as proinflammatory cytokines or physical stress stimulate the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. In this cascade, two dual specificity kinases MAP2K4/MKK4 and MAP2K7/MKK7 phosphorylate and activate MAPK10/JNK3. In turn, MAPK10/JNK3 phosphorylates a number of transcription factors, primarily components of AP-1 such as JUN and ATF2 and thus regulates AP-1 transcriptional activity. Plays regulatory roles in the signaling pathways during neuronal apoptosis. Phosphorylates the neuronal microtubule regulator STMN2. Acts in the regulation of the beta-amyloid precursor protein/APP signaling during neuronal differentiation by phosphorylating APP. Participates also in neurite growth in spiral ganglion neurons.<ref>PMID:11718727</ref> 
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The mitogen-activated kinases JNK1/2/3 are key enzymes in signaling modules that transduce and integrate extracellular stimuli into coordinated cellular response. Here, we report the discovery of irreversible inhibitors of JNK1/2/3. We describe two JNK3 cocrystal structures at 2.60 and 2.97 A resolution that show the compounds form covalent bonds with a conserved cysteine residue. JNK-IN-8 is a selective JNK inhibitor that inhibits phosphorylation of c-Jun, a direct substrate of JNK, in cells exposed to submicromolar drug in a manner that depends on covalent modification of the conserved cysteine residue. Extensive biochemical, cellular, and pathway-based profiling establish the selectivity of JNK-IN-8 for JNK and suggests that the compound will be broadly useful as a pharmacological probe of JNK-dependent signal transduction. Potential lead compounds have also been identified for kinases, including IRAK1, PIK3C3, PIP4K2C, and PIP5K3.


==Function==
Discovery of potent and selective covalent inhibitors of JNK.,Zhang T, Inesta-Vaquera F, Niepel M, Zhang J, Ficarro SB, Machleidt T, Xie T, Marto JA, Kim N, Sim T, Laughlin JD, Park H, LoGrasso PV, Patricelli M, Nomanbhoy TK, Sorger PK, Alessi DR, Gray NS Chem Biol. 2012 Jan 27;19(1):140-54. PMID:22284361<ref>PMID:22284361</ref>
[[http://www.uniprot.org/uniprot/MK10_HUMAN MK10_HUMAN]] Serine/threonine-protein kinase involved in various processes such as neuronal proliferation, differentiation, migration and programmed cell death. Extracellular stimuli such as proinflammatory cytokines or physical stress stimulate the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. In this cascade, two dual specificity kinases MAP2K4/MKK4 and MAP2K7/MKK7 phosphorylate and activate MAPK10/JNK3. In turn, MAPK10/JNK3 phosphorylates a number of transcription factors, primarily components of AP-1 such as JUN and ATF2 and thus regulates AP-1 transcriptional activity. Plays regulatory roles in the signaling pathways during neuronal apoptosis. Phosphorylates the neuronal microtubule regulator STMN2. Acts in the regulation of the beta-amyloid precursor protein/APP signaling during neuronal differentiation by phosphorylating APP. Participates also in neurite growth in spiral ganglion neurons.<ref>PMID:11718727</ref>  


==About this Structure==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
[[3v6s]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3V6S OCA].
</div>


==Reference==
==See Also==
<ref group="xtra">PMID:022284361</ref><references group="xtra"/><references/>
*[[Mitogen-activated protein kinase|Mitogen-activated protein kinase]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Mitogen-activated protein kinase]]
[[Category: Mitogen-activated protein kinase]]
[[Category: Laughlin, J D.]]
[[Category: Laughlin, J D]]
[[Category: LoGrasso, P V.]]
[[Category: LoGrasso, P V]]
[[Category: Park, H.]]
[[Category: Park, H]]
[[Category: Apoptosis]]
[[Category: Apoptosis]]
[[Category: Cys modification]]
[[Category: Cys modification]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA