3s6c: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Structure of human CD1e== | |||
=== | <StructureSection load='3s6c' size='340' side='right' caption='[[3s6c]], [[Resolution|resolution]] 2.90Å' scene=''> | ||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[3s6c]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3S6C OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3S6C FirstGlance]. <br> | |||
==Disease== | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=FUC:ALPHA-L-FUCOSE'>FUC</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> | ||
[[http://www.uniprot.org/uniprot/B2MG_HUMAN B2MG_HUMAN]] Defects in B2M are the cause of hypercatabolic hypoproteinemia (HYCATHYP) [MIM:[http://omim.org/entry/241600 241600]]. Affected individuals show marked reduction in serum concentrations of immunoglobulin and albumin, probably due to rapid degradation.<ref>PMID:16549777</ref> | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">B2M, CD1E ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3s6c FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3s6c OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3s6c RCSB], [http://www.ebi.ac.uk/pdbsum/3s6c PDBsum]</span></td></tr> | |||
</table> | |||
== Disease == | |||
[[http://www.uniprot.org/uniprot/B2MG_HUMAN B2MG_HUMAN]] Defects in B2M are the cause of hypercatabolic hypoproteinemia (HYCATHYP) [MIM:[http://omim.org/entry/241600 241600]]. Affected individuals show marked reduction in serum concentrations of immunoglobulin and albumin, probably due to rapid degradation.<ref>PMID:16549777</ref> Note=Beta-2-microglobulin may adopt the fibrillar configuration of amyloid in certain pathologic states. The capacity to assemble into amyloid fibrils is concentration dependent. Persistently high beta(2)-microglobulin serum levels lead to amyloidosis in patients on long-term hemodialysis.<ref>PMID:3532124</ref> <ref>PMID:1336137</ref> <ref>PMID:7554280</ref> <ref>PMID:4586824</ref> <ref>PMID:8084451</ref> <ref>PMID:12119416</ref> <ref>PMID:12796775</ref> <ref>PMID:16901902</ref> <ref>PMID:16491088</ref> <ref>PMID:17646174</ref> <ref>PMID:18835253</ref> <ref>PMID:18395224</ref> <ref>PMID:19284997</ref> | |||
== Function == | |||
[[http://www.uniprot.org/uniprot/B2MG_HUMAN B2MG_HUMAN]] Component of the class I major histocompatibility complex (MHC). Involved in the presentation of peptide antigens to the immune system. | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
CD1e is the only human CD1 protein existing in soluble form in the late endosomes of dendritic cells, where it facilitates the processing of glycolipid antigens that are ultimately recognized by CD1b-restricted T cells. The precise function of CD1e remains undefined, thus impeding efforts to predict the participation of this protein in the presentation of other antigens. To gain insight into its function, we determined the crystal structure of recombinant CD1e expressed in human cells at 2.90-A resolution. The structure revealed a groove less intricate than in other CD1 proteins, with a significantly wider portal characterized by a 2 A-larger spacing between the alpha1 and alpha2 helices. No electron density corresponding to endogenous ligands was detected within the groove, despite the presence of ligands unequivocally established by native mass spectrometry in recombinant CD1e. Our structural data indicate that the water-exposed CD1e groove could ensure the establishment of loose contacts with lipids. In agreement with this possibility, lipid association and dissociation processes were found to be considerably faster with CD1e than with CD1b. Moreover, CD1e was found to mediate in vitro the transfer of lipids to CD1b and the displacement of lipids from stable CD1b-antigen complexes. Altogether, these data support that CD1e could have evolved to mediate lipid-exchange/editing processes with CD1b and point to a pathway whereby the repertoire of lipid antigens presented by human dendritic cells might be expanded. | |||
Crystal structure of human CD1e reveals a groove suited for lipid-exchange processes.,Garcia-Alles LF, Giacometti G, Versluis C, Maveyraud L, de Paepe D, Guiard J, Tranier S, Gilleron M, Prandi J, Hanau D, Heck AJ, Mori L, De Libero G, Puzo G, Mourey L, de la Salle H Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13230-5. Epub 2011 Jul 25. PMID:21788486<ref>PMID:21788486</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | ==See Also== | ||
*[[Beta-2 microglobulin|Beta-2 microglobulin]] | *[[Beta-2 microglobulin|Beta-2 microglobulin]] | ||
== References == | |||
== | <references/> | ||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: Garcia-Alles, L F | [[Category: Garcia-Alles, L F]] | ||
[[Category: Maveyraud, L | [[Category: Maveyraud, L]] | ||
[[Category: Mourey, L | [[Category: Mourey, L]] | ||
[[Category: Tranier, S | [[Category: Tranier, S]] | ||
[[Category: Antigen presentation]] | [[Category: Antigen presentation]] | ||
[[Category: Immune system]] | [[Category: Immune system]] |
Revision as of 09:48, 21 December 2014
Structure of human CD1eStructure of human CD1e
Structural highlights
Disease[B2MG_HUMAN] Defects in B2M are the cause of hypercatabolic hypoproteinemia (HYCATHYP) [MIM:241600]. Affected individuals show marked reduction in serum concentrations of immunoglobulin and albumin, probably due to rapid degradation.[1] Note=Beta-2-microglobulin may adopt the fibrillar configuration of amyloid in certain pathologic states. The capacity to assemble into amyloid fibrils is concentration dependent. Persistently high beta(2)-microglobulin serum levels lead to amyloidosis in patients on long-term hemodialysis.[2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] Function[B2MG_HUMAN] Component of the class I major histocompatibility complex (MHC). Involved in the presentation of peptide antigens to the immune system. Publication Abstract from PubMedCD1e is the only human CD1 protein existing in soluble form in the late endosomes of dendritic cells, where it facilitates the processing of glycolipid antigens that are ultimately recognized by CD1b-restricted T cells. The precise function of CD1e remains undefined, thus impeding efforts to predict the participation of this protein in the presentation of other antigens. To gain insight into its function, we determined the crystal structure of recombinant CD1e expressed in human cells at 2.90-A resolution. The structure revealed a groove less intricate than in other CD1 proteins, with a significantly wider portal characterized by a 2 A-larger spacing between the alpha1 and alpha2 helices. No electron density corresponding to endogenous ligands was detected within the groove, despite the presence of ligands unequivocally established by native mass spectrometry in recombinant CD1e. Our structural data indicate that the water-exposed CD1e groove could ensure the establishment of loose contacts with lipids. In agreement with this possibility, lipid association and dissociation processes were found to be considerably faster with CD1e than with CD1b. Moreover, CD1e was found to mediate in vitro the transfer of lipids to CD1b and the displacement of lipids from stable CD1b-antigen complexes. Altogether, these data support that CD1e could have evolved to mediate lipid-exchange/editing processes with CD1b and point to a pathway whereby the repertoire of lipid antigens presented by human dendritic cells might be expanded. Crystal structure of human CD1e reveals a groove suited for lipid-exchange processes.,Garcia-Alles LF, Giacometti G, Versluis C, Maveyraud L, de Paepe D, Guiard J, Tranier S, Gilleron M, Prandi J, Hanau D, Heck AJ, Mori L, De Libero G, Puzo G, Mourey L, de la Salle H Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13230-5. Epub 2011 Jul 25. PMID:21788486[15] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|