3rxx: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==KPC-2 carbapenemase in complex with 3-NPBA== | |||
=== | <StructureSection load='3rxx' size='340' side='right' caption='[[3rxx]], [[Resolution|resolution]] 1.62Å' scene=''> | ||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[3rxx]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Klebsiella_pneumoniae Klebsiella pneumoniae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3RXX OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3RXX FirstGlance]. <br> | |||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=NPB:3-NITROPHENYLBORONIC+ACID'>NPB</scene></td></tr> | |||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3qxw|3qxw]]</td></tr> | |||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">bla, BLAKPC-2, kpc, kpc1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=573 Klebsiella pneumoniae])</td></tr> | |||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Beta-lactamase Beta-lactamase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.5.2.6 3.5.2.6] </span></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3rxx FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3rxx OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3rxx RCSB], [http://www.ebi.ac.uk/pdbsum/3rxx PDBsum]</span></td></tr> | |||
</table> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Class A carbapenemases are a major threat to the potency of carbapenem antibiotics. A widespread carbapenemase, KPC-2, is not easily inhibited by beta-lactamase inhibitors (i.e., clavulanic acid, sulbactam, and tazobactam). To discover different mechanisms of inhibition of KPC-2, we determined the crystal structures of KPC-2 with two beta-lactamase inhibitors that possess different inactivation mechanisms and kinetics. The first complex is of a small boronic acid compound, 3-nitrophenyl boronic acid (3-NPBA) bound to KPC-2 determined at 1.62 A resolution. 3-NPBA demonstrates a K(m) value of 1.0 +/- 0.1 muM for KPC-2 and blocks the active site by making a reversible covalent interaction with the catalytic S70 residue. The two boron hydroxyl atoms of 3-NPBA are positioned in the oxyanion hole and the deacylation water pocket, respectively. In addition, the aromatic ring of 3-NPBA makes an edge-to-face interaction with W105 in the active site. The structure of KPC-2 with the penam sulfone, PSR-3-226, was determined at 1.26 A resolution. PSR-3-226 displays a K(m) value of 3.8 +/- 0.4 muM for KPC-2 and the k(inact) is 0.034 +/- 0.003 s(-1). Covalently bound to S70, PSR-3-226 forms a trans-enamine intermediate in the KPC-2 active site. The predominant active site interactions are generated via the carbonyl oxygen, which resides in the oxyanion hole, and the carboxyl moiety of PSR-3-226 which interacts with N132, N170, and E166. 3-NPBA and PSR-3-226 are the first beta-lactamase inhibitors to be trapped as an acyl-enzyme complex with KPC-2. The structural and inhibitory insights gained herein could aid in the design of potent KPC-2 inhibitors. | |||
Crystal Structures of KPC-2 beta-Lactamase in Complex with 3-NPBA and PSR-3-226.,Ke W, Bethel CR, Papp-Wallace KM, Pagadala SR, Nottingham M, Fernandez D, Buynak JD, Bonomo RA, van den Akker F Antimicrob Agents Chemother. 2012 Feb 13. PMID:22330909<ref>PMID:22330909</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
== | ==See Also== | ||
*[[Beta-lactamase|Beta-lactamase]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Beta-lactamase]] | [[Category: Beta-lactamase]] | ||
[[Category: Klebsiella pneumoniae]] | [[Category: Klebsiella pneumoniae]] | ||
[[Category: Akker, F van den | [[Category: Akker, F van den]] | ||
[[Category: Ke, W | [[Category: Ke, W]] | ||
[[Category: Hydrolase-hydrolase inhibitor complex]] | [[Category: Hydrolase-hydrolase inhibitor complex]] | ||
[[Category: Inhibitor]] | [[Category: Inhibitor]] |
Revision as of 13:06, 19 December 2014
KPC-2 carbapenemase in complex with 3-NPBAKPC-2 carbapenemase in complex with 3-NPBA
Structural highlights
Publication Abstract from PubMedClass A carbapenemases are a major threat to the potency of carbapenem antibiotics. A widespread carbapenemase, KPC-2, is not easily inhibited by beta-lactamase inhibitors (i.e., clavulanic acid, sulbactam, and tazobactam). To discover different mechanisms of inhibition of KPC-2, we determined the crystal structures of KPC-2 with two beta-lactamase inhibitors that possess different inactivation mechanisms and kinetics. The first complex is of a small boronic acid compound, 3-nitrophenyl boronic acid (3-NPBA) bound to KPC-2 determined at 1.62 A resolution. 3-NPBA demonstrates a K(m) value of 1.0 +/- 0.1 muM for KPC-2 and blocks the active site by making a reversible covalent interaction with the catalytic S70 residue. The two boron hydroxyl atoms of 3-NPBA are positioned in the oxyanion hole and the deacylation water pocket, respectively. In addition, the aromatic ring of 3-NPBA makes an edge-to-face interaction with W105 in the active site. The structure of KPC-2 with the penam sulfone, PSR-3-226, was determined at 1.26 A resolution. PSR-3-226 displays a K(m) value of 3.8 +/- 0.4 muM for KPC-2 and the k(inact) is 0.034 +/- 0.003 s(-1). Covalently bound to S70, PSR-3-226 forms a trans-enamine intermediate in the KPC-2 active site. The predominant active site interactions are generated via the carbonyl oxygen, which resides in the oxyanion hole, and the carboxyl moiety of PSR-3-226 which interacts with N132, N170, and E166. 3-NPBA and PSR-3-226 are the first beta-lactamase inhibitors to be trapped as an acyl-enzyme complex with KPC-2. The structural and inhibitory insights gained herein could aid in the design of potent KPC-2 inhibitors. Crystal Structures of KPC-2 beta-Lactamase in Complex with 3-NPBA and PSR-3-226.,Ke W, Bethel CR, Papp-Wallace KM, Pagadala SR, Nottingham M, Fernandez D, Buynak JD, Bonomo RA, van den Akker F Antimicrob Agents Chemother. 2012 Feb 13. PMID:22330909[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|