3fp4: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal structure of Tom71 complexed with Ssa1 C-terminal fragment== | |||
<StructureSection load='3fp4' size='340' side='right' caption='[[3fp4]], [[Resolution|resolution]] 2.14Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[3fp4]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3FP4 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3FP4 FirstGlance]. <br> | |||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | |||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3fp1|3fp1]], [[3fp2|3fp2]], [[3fp3|3fp3]]</td></tr> | |||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">YHR117W ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=4932 Saccharomyces cerevisiae])</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3fp4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3fp4 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3fp4 RCSB], [http://www.ebi.ac.uk/pdbsum/3fp4 PDBsum]</span></td></tr> | |||
</table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/fp/3fp4_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The preproteins targeted to the mitochondria are transported through the translocase of the outer membrane complex. Tom70/Tom71 is a major surface receptor of the translocase of the outer membrane complex for mitochondrial preproteins. The preproteins are escorted to Tom70/Tom71 by molecular chaperones Hsp70 and Hsp90. Here we present the high resolution crystal structures of Tom71 and the protein complexes between Tom71 and the Hsp70/Hsp90 C terminus. The crystal structures indicate that Tom70/Tom71 may exhibit two distinct states. In the closed state, the N-terminal domain of Tom70/Tom71 partially blocks the preprotein-binding pocket. In the open state, the N-terminal domain moves away, and the preprotein-binding pocket is fully exposed. The complex formation between the C-terminal EEVD motif of Hsp70/Hsp90 and Tom71 could lock Tom71 in the open state where the preprotein-binding pocket of Tom71 is ready to receive preproteins. The interactions between Hsp70/Hsp90 and Tom71 N-terminal domain generate conformational changes that may increase the volume of the preprotein-binding pocket. The complex formation of Hsp70/Hsp90 and Tom71 also generates significant domain rearrangement within Tom71, which may position the preprotein-binding pocket closer to Hsp70/Hsp90 to facilitate the preprotein transfer from the molecular chaperone to Tom71. Therefore, molecular chaperone Hsp70/Hsp90 may function to prepare the mitochondrial outer membrane receptor Tom71 for preprotein loading. | |||
Molecular chaperone Hsp70/Hsp90 prepares the mitochondrial outer membrane translocon receptor Tom71 for preprotein loading.,Li J, Qian X, Hu J, Sha B J Biol Chem. 2009 Aug 28;284(35):23852-9. Epub 2009 Jul 6. PMID:19581297<ref>PMID:19581297</ref> | |||
== | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
</div> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Saccharomyces cerevisiae]] | [[Category: Saccharomyces cerevisiae]] | ||
[[Category: Hu, J | [[Category: Hu, J]] | ||
[[Category: Li, J | [[Category: Li, J]] | ||
[[Category: Qian, X | [[Category: Qian, X]] | ||
[[Category: Sha, B | [[Category: Sha, B]] | ||
[[Category: Chaperone]] | [[Category: Chaperone]] | ||
[[Category: Hsp70]] | [[Category: Hsp70]] |
Revision as of 16:31, 18 December 2014
Crystal structure of Tom71 complexed with Ssa1 C-terminal fragmentCrystal structure of Tom71 complexed with Ssa1 C-terminal fragment
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe preproteins targeted to the mitochondria are transported through the translocase of the outer membrane complex. Tom70/Tom71 is a major surface receptor of the translocase of the outer membrane complex for mitochondrial preproteins. The preproteins are escorted to Tom70/Tom71 by molecular chaperones Hsp70 and Hsp90. Here we present the high resolution crystal structures of Tom71 and the protein complexes between Tom71 and the Hsp70/Hsp90 C terminus. The crystal structures indicate that Tom70/Tom71 may exhibit two distinct states. In the closed state, the N-terminal domain of Tom70/Tom71 partially blocks the preprotein-binding pocket. In the open state, the N-terminal domain moves away, and the preprotein-binding pocket is fully exposed. The complex formation between the C-terminal EEVD motif of Hsp70/Hsp90 and Tom71 could lock Tom71 in the open state where the preprotein-binding pocket of Tom71 is ready to receive preproteins. The interactions between Hsp70/Hsp90 and Tom71 N-terminal domain generate conformational changes that may increase the volume of the preprotein-binding pocket. The complex formation of Hsp70/Hsp90 and Tom71 also generates significant domain rearrangement within Tom71, which may position the preprotein-binding pocket closer to Hsp70/Hsp90 to facilitate the preprotein transfer from the molecular chaperone to Tom71. Therefore, molecular chaperone Hsp70/Hsp90 may function to prepare the mitochondrial outer membrane receptor Tom71 for preprotein loading. Molecular chaperone Hsp70/Hsp90 prepares the mitochondrial outer membrane translocon receptor Tom71 for preprotein loading.,Li J, Qian X, Hu J, Sha B J Biol Chem. 2009 Aug 28;284(35):23852-9. Epub 2009 Jul 6. PMID:19581297[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|