2xac: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
{{STRUCTURE_2xac|  PDB=2xac  |  SCENE=  }}
==STRUCTURAL INSIGHTS INTO THE BINDING OF VEGF-B BY VEGFR-1D2: RECOGNITION AND SPECIFICITY==
===STRUCTURAL INSIGHTS INTO THE BINDING OF VEGF-B BY VEGFR-1D2: RECOGNITION AND SPECIFICITY===
<StructureSection load='2xac' size='340' side='right' caption='[[2xac]], [[Resolution|resolution]] 2.71&Aring;' scene=''>
{{ABSTRACT_PUBMED_20501651}}
== Structural highlights ==
 
<table><tr><td colspan='2'>[[2xac]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2XAC OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2XAC FirstGlance]. <br>
==Disease==
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1rv6|1rv6]], [[2c7w|2c7w]], [[1qsv|1qsv]], [[2vwe|2vwe]], [[1qty|1qty]], [[1qsz|1qsz]], [[1flt|1flt]]</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Receptor_protein-tyrosine_kinase Receptor protein-tyrosine kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.10.1 2.7.10.1] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2xac FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2xac OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2xac RCSB], [http://www.ebi.ac.uk/pdbsum/2xac PDBsum]</span></td></tr>
</table>
== Disease ==
[[http://www.uniprot.org/uniprot/VGFR1_HUMAN VGFR1_HUMAN]] Note=Can contribute to cancer cell survival, proliferation, migration, and invasion, and tumor angiogenesis and metastasis. May contribute to cancer pathogenesis by promoting inflammatory responses and recruitment of tumor-infiltrating macrophages.  Note=Abnormally high expression of soluble isoforms (isoform 2, isoform 3 or isoform 4) may be a cause of preeclampsia.  
[[http://www.uniprot.org/uniprot/VGFR1_HUMAN VGFR1_HUMAN]] Note=Can contribute to cancer cell survival, proliferation, migration, and invasion, and tumor angiogenesis and metastasis. May contribute to cancer pathogenesis by promoting inflammatory responses and recruitment of tumor-infiltrating macrophages.  Note=Abnormally high expression of soluble isoforms (isoform 2, isoform 3 or isoform 4) may be a cause of preeclampsia.  
== Function ==
[[http://www.uniprot.org/uniprot/VEGFB_HUMAN VEGFB_HUMAN]] Growth factor for endothelial cells. VEGF-B167 binds heparin and neuropilin-1 whereas the binding to neuropilin-1 of VEGF-B186 is regulated by proteolysis. [[http://www.uniprot.org/uniprot/VGFR1_HUMAN VGFR1_HUMAN]] Tyrosine-protein kinase that acts as a cell-surface receptor for VEGFA, VEGFB and PGF, and plays an essential role in the development of embryonic vasculature, the regulation of angiogenesis, cell survival, cell migration, macrophage function, chemotaxis, and cancer cell invasion. May play an essential role as a negative regulator of embryonic angiogenesis by inhibiting excessive proliferation of endothelial cells. Can promote endothelial cell proliferation, survival and angiogenesis in adulthood. Its function in promoting cell proliferation seems to be cell-type specific. Promotes PGF-mediated proliferation of endothelial cells, proliferation of some types of cancer cells, but does not promote proliferation of normal fibroblasts (in vitro). Has very high affinity for VEGFA and relatively low protein kinase activity; may function as a negative regulator of VEGFA signaling by limiting the amount of free VEGFA and preventing its binding to KDR. Likewise, isoforms lacking a transmembrane domain, such as isoform 2, isoform 3 and isoform 4, may function as decoy receptors for VEGFA. Modulates KDR signaling by forming heterodimers with KDR. Ligand binding leads to the activation of several signaling cascades. Activation of PLCG leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate and the activation of protein kinase C. Mediates phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, leading to activation of phosphatidylinositol kinase and the downstream signaling pathway. Mediates activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Phosphorylates SRC and YES1, and may also phosphorylate CBL. Isoform 1 phosphorylates PLCG. Promotes phosphorylation of AKT1 at 'Ser-473'. Promotes phosphorylation of PTK2/FAK1. Isoform 7 has a truncated kinase domain; it increases phosphorylation of SRC at 'Tyr-418' by unknown means and promotes tumor cell invasion.<ref>PMID:8248162</ref> <ref>PMID:18593464</ref> <ref>PMID:18515749</ref> <ref>PMID:20512933</ref> <ref>PMID:7824266</ref> <ref>PMID:8605350</ref> <ref>PMID:9299537</ref> <ref>PMID:11141500</ref> <ref>PMID:11811792</ref> <ref>PMID:11312102</ref> <ref>PMID:14633857</ref> <ref>PMID:12796773</ref> <ref>PMID:15735759</ref> <ref>PMID:16685275</ref> <ref>PMID:18079407</ref> <ref>PMID:18583712</ref> <ref>PMID:20551949</ref> <ref>PMID:21752276</ref> 
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/xa/2xac_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The formation of blood vessels (angiogenesis) is a highly orchestrated sequence of events involving crucial receptor-ligand interactions. Angiogenesis is critical for physiological processes such as development, wound healing, reproduction, tissue regeneration, and remodeling. It also plays a major role in sustaining tumor progression and chronic inflammation. Vascular endothelial growth factor (VEGF)-B, a member of the VEGF family of angiogenic growth factors, effects blood vessel formation by binding to a tyrosine kinase receptor, VEGFR-1. There is growing evidence of the important role played by VEGF-B in physiological and pathological vasculogenesis. Development of VEGF-B antagonists, which inhibit the interaction of this molecule with its cognate receptor, would be important for the treatment of pathologies associated specifically with this growth factor. In this study, we present the crystal structure of the complex of VEGF-B with domain 2 of VEGFR-1 at 2.7 A resolution. Our analysis reveals that each molecule of the ligand engages two receptor molecules using two symmetrical binding sites. Based on these interactions, we identify the receptor-binding determinants on VEGF-B and shed light on the differences in specificity towards VEGFR-1 among the different VEGF homologs.


==Function==
Structural insights into the binding of vascular endothelial growth factor-B by VEGFR-1(D2): recognition and specificity.,Iyer S, Darley PI, Acharya KR J Biol Chem. 2010 Jul 30;285(31):23779-89. Epub 2010 May 25. PMID:20501651<ref>PMID:20501651</ref>
[[http://www.uniprot.org/uniprot/VEGFB_HUMAN VEGFB_HUMAN]] Growth factor for endothelial cells. VEGF-B167 binds heparin and neuropilin-1 whereas the binding to neuropilin-1 of VEGF-B186 is regulated by proteolysis. [[http://www.uniprot.org/uniprot/VGFR1_HUMAN VGFR1_HUMAN]] Tyrosine-protein kinase that acts as a cell-surface receptor for VEGFA, VEGFB and PGF, and plays an essential role in the development of embryonic vasculature, the regulation of angiogenesis, cell survival, cell migration, macrophage function, chemotaxis, and cancer cell invasion. May play an essential role as a negative regulator of embryonic angiogenesis by inhibiting excessive proliferation of endothelial cells. Can promote endothelial cell proliferation, survival and angiogenesis in adulthood. Its function in promoting cell proliferation seems to be cell-type specific. Promotes PGF-mediated proliferation of endothelial cells, proliferation of some types of cancer cells, but does not promote proliferation of normal fibroblasts (in vitro). Has very high affinity for VEGFA and relatively low protein kinase activity; may function as a negative regulator of VEGFA signaling by limiting the amount of free VEGFA and preventing its binding to KDR. Likewise, isoforms lacking a transmembrane domain, such as isoform 2, isoform 3 and isoform 4, may function as decoy receptors for VEGFA. Modulates KDR signaling by forming heterodimers with KDR. Ligand binding leads to the activation of several signaling cascades. Activation of PLCG leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate and the activation of protein kinase C. Mediates phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, leading to activation of phosphatidylinositol kinase and the downstream signaling pathway. Mediates activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Phosphorylates SRC and YES1, and may also phosphorylate CBL. Isoform 1 phosphorylates PLCG. Promotes phosphorylation of AKT1 at 'Ser-473'. Promotes phosphorylation of PTK2/FAK1. Isoform 7 has a truncated kinase domain; it increases phosphorylation of SRC at 'Tyr-418' by unknown means and promotes tumor cell invasion.<ref>PMID:8248162</ref><ref>PMID:18593464</ref><ref>PMID:18515749</ref><ref>PMID:20512933</ref><ref>PMID:7824266</ref><ref>PMID:8605350</ref><ref>PMID:9299537</ref><ref>PMID:11141500</ref><ref>PMID:11811792</ref><ref>PMID:11312102</ref><ref>PMID:14633857</ref><ref>PMID:12796773</ref><ref>PMID:15735759</ref><ref>PMID:16685275</ref><ref>PMID:18079407</ref><ref>PMID:18583712</ref><ref>PMID:20551949</ref><ref>PMID:21752276</ref>  


==About this Structure==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
[[2xac]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2XAC OCA].
</div>


==See Also==
==See Also==
*[[Vascular Endothelial Growth Factor|Vascular Endothelial Growth Factor]]
*[[Vascular Endothelial Growth Factor|Vascular Endothelial Growth Factor]]
*[[Vascular Endothelial Growth Factor Receptor|Vascular Endothelial Growth Factor Receptor]]
*[[Vascular Endothelial Growth Factor Receptor|Vascular Endothelial Growth Factor Receptor]]
 
== References ==
==Reference==
<references/>
<ref group="xtra">PMID:020501651</ref><references group="xtra"/><references/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Receptor protein-tyrosine kinase]]
[[Category: Receptor protein-tyrosine kinase]]
[[Category: Acharya, K R.]]
[[Category: Acharya, K R]]
[[Category: Darley, P.]]
[[Category: Darley, P]]
[[Category: Iyer, S.]]
[[Category: Iyer, S]]
[[Category: Angiogenesis]]
[[Category: Angiogenesis]]
[[Category: Cysteine-knot protein]]
[[Category: Cysteine-knot protein]]

Revision as of 15:09, 18 December 2014

STRUCTURAL INSIGHTS INTO THE BINDING OF VEGF-B BY VEGFR-1D2: RECOGNITION AND SPECIFICITYSTRUCTURAL INSIGHTS INTO THE BINDING OF VEGF-B BY VEGFR-1D2: RECOGNITION AND SPECIFICITY

Structural highlights

2xac is a 4 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Activity:Receptor protein-tyrosine kinase, with EC number 2.7.10.1
Resources:FirstGlance, OCA, RCSB, PDBsum

Disease

[VGFR1_HUMAN] Note=Can contribute to cancer cell survival, proliferation, migration, and invasion, and tumor angiogenesis and metastasis. May contribute to cancer pathogenesis by promoting inflammatory responses and recruitment of tumor-infiltrating macrophages. Note=Abnormally high expression of soluble isoforms (isoform 2, isoform 3 or isoform 4) may be a cause of preeclampsia.

Function

[VEGFB_HUMAN] Growth factor for endothelial cells. VEGF-B167 binds heparin and neuropilin-1 whereas the binding to neuropilin-1 of VEGF-B186 is regulated by proteolysis. [VGFR1_HUMAN] Tyrosine-protein kinase that acts as a cell-surface receptor for VEGFA, VEGFB and PGF, and plays an essential role in the development of embryonic vasculature, the regulation of angiogenesis, cell survival, cell migration, macrophage function, chemotaxis, and cancer cell invasion. May play an essential role as a negative regulator of embryonic angiogenesis by inhibiting excessive proliferation of endothelial cells. Can promote endothelial cell proliferation, survival and angiogenesis in adulthood. Its function in promoting cell proliferation seems to be cell-type specific. Promotes PGF-mediated proliferation of endothelial cells, proliferation of some types of cancer cells, but does not promote proliferation of normal fibroblasts (in vitro). Has very high affinity for VEGFA and relatively low protein kinase activity; may function as a negative regulator of VEGFA signaling by limiting the amount of free VEGFA and preventing its binding to KDR. Likewise, isoforms lacking a transmembrane domain, such as isoform 2, isoform 3 and isoform 4, may function as decoy receptors for VEGFA. Modulates KDR signaling by forming heterodimers with KDR. Ligand binding leads to the activation of several signaling cascades. Activation of PLCG leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate and the activation of protein kinase C. Mediates phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, leading to activation of phosphatidylinositol kinase and the downstream signaling pathway. Mediates activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Phosphorylates SRC and YES1, and may also phosphorylate CBL. Isoform 1 phosphorylates PLCG. Promotes phosphorylation of AKT1 at 'Ser-473'. Promotes phosphorylation of PTK2/FAK1. Isoform 7 has a truncated kinase domain; it increases phosphorylation of SRC at 'Tyr-418' by unknown means and promotes tumor cell invasion.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The formation of blood vessels (angiogenesis) is a highly orchestrated sequence of events involving crucial receptor-ligand interactions. Angiogenesis is critical for physiological processes such as development, wound healing, reproduction, tissue regeneration, and remodeling. It also plays a major role in sustaining tumor progression and chronic inflammation. Vascular endothelial growth factor (VEGF)-B, a member of the VEGF family of angiogenic growth factors, effects blood vessel formation by binding to a tyrosine kinase receptor, VEGFR-1. There is growing evidence of the important role played by VEGF-B in physiological and pathological vasculogenesis. Development of VEGF-B antagonists, which inhibit the interaction of this molecule with its cognate receptor, would be important for the treatment of pathologies associated specifically with this growth factor. In this study, we present the crystal structure of the complex of VEGF-B with domain 2 of VEGFR-1 at 2.7 A resolution. Our analysis reveals that each molecule of the ligand engages two receptor molecules using two symmetrical binding sites. Based on these interactions, we identify the receptor-binding determinants on VEGF-B and shed light on the differences in specificity towards VEGFR-1 among the different VEGF homologs.

Structural insights into the binding of vascular endothelial growth factor-B by VEGFR-1(D2): recognition and specificity.,Iyer S, Darley PI, Acharya KR J Biol Chem. 2010 Jul 30;285(31):23779-89. Epub 2010 May 25. PMID:20501651[19]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Kendall RL, Thomas KA. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10705-9. PMID:8248162
  2. Jin P, Zhang J, Sumariwalla PF, Ni I, Jorgensen B, Crawford D, Phillips S, Feldmann M, Shepard HM, Paleolog EM. Novel splice variants derived from the receptor tyrosine kinase superfamily are potential therapeutics for rheumatoid arthritis. Arthritis Res Ther. 2008;10(4):R73. doi: 10.1186/ar2447. Epub 2008 Jul 1. PMID:18593464 doi:10.1186/ar2447
  3. Sela S, Itin A, Natanson-Yaron S, Greenfield C, Goldman-Wohl D, Yagel S, Keshet E. A novel human-specific soluble vascular endothelial growth factor receptor 1: cell-type-specific splicing and implications to vascular endothelial growth factor homeostasis and preeclampsia. Circ Res. 2008 Jun 20;102(12):1566-74. doi: 10.1161/CIRCRESAHA.108.171504. Epub, 2008 May 30. PMID:18515749 doi:10.1161/CIRCRESAHA.108.171504
  4. Mezquita B, Mezquita J, Pau M, Mezquita C. A novel intracellular isoform of VEGFR-1 activates Src and promotes cell invasion in MDA-MB-231 breast cancer cells. J Cell Biochem. 2010 Jun 1;110(3):732-42. doi: 10.1002/jcb.22584. PMID:20512933 doi:10.1002/jcb.22584
  5. Seetharam L, Gotoh N, Maru Y, Neufeld G, Yamaguchi S, Shibuya M. A unique signal transduction from FLT tyrosine kinase, a receptor for vascular endothelial growth factor VEGF. Oncogene. 1995 Jan 5;10(1):135-47. PMID:7824266
  6. Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marme D. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood. 1996 Apr 15;87(8):3336-43. PMID:8605350
  7. Sawano A, Takahashi T, Yamaguchi S, Shibuya M. The phosphorylated 1169-tyrosine containing region of flt-1 kinase (VEGFR-1) is a major binding site for PLCgamma. Biochem Biophys Res Commun. 1997 Sep 18;238(2):487-91. PMID:9299537 doi:10.1006/bbrc.1997.7327
  8. Dunk C, Ahmed A. Vascular endothelial growth factor receptor-2-mediated mitogenesis is negatively regulated by vascular endothelial growth factor receptor-1 in tumor epithelial cells. Am J Pathol. 2001 Jan;158(1):265-73. PMID:11141500 doi:10.1016/S0002-9440(10)63965-X
  9. Angelucci C, Lama G, Iacopino F, Maglione D, Sica G. Effect of placenta growth factor-1 on proliferation and release of nitric oxide, cyclic AMP and cyclic GMP in human epithelial cells expressing the FLT-1 receptor. Growth Factors. 2001;19(3):193-206. PMID:11811792
  10. Huang K, Andersson C, Roomans GM, Ito N, Claesson-Welsh L. Signaling properties of VEGF receptor-1 and -2 homo- and heterodimers. Int J Biochem Cell Biol. 2001 Apr;33(4):315-24. PMID:11312102
  11. Cai J, Ahmad S, Jiang WG, Huang J, Kontos CD, Boulton M, Ahmed A. Activation of vascular endothelial growth factor receptor-1 sustains angiogenesis and Bcl-2 expression via the phosphatidylinositol 3-kinase pathway in endothelial cells. Diabetes. 2003 Dec;52(12):2959-68. PMID:14633857
  12. Autiero M, Waltenberger J, Communi D, Kranz A, Moons L, Lambrechts D, Kroll J, Plaisance S, De Mol M, Bono F, Kliche S, Fellbrich G, Ballmer-Hofer K, Maglione D, Mayr-Beyrle U, Dewerchin M, Dombrowski S, Stanimirovic D, Van Hummelen P, Dehio C, Hicklin DJ, Persico G, Herbert JM, Communi D, Shibuya M, Collen D, Conway EM, Carmeliet P. Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med. 2003 Jul;9(7):936-43. PMID:12796773 doi:10.1038/nm884
  13. Fan F, Wey JS, McCarty MF, Belcheva A, Liu W, Bauer TW, Somcio RJ, Wu Y, Hooper A, Hicklin DJ, Ellis LM. Expression and function of vascular endothelial growth factor receptor-1 on human colorectal cancer cells. Oncogene. 2005 Apr 14;24(16):2647-53. PMID:15735759 doi:10.1038/sj.onc.1208246
  14. Lesslie DP, Summy JM, Parikh NU, Fan F, Trevino JG, Sawyer TK, Metcalf CA, Shakespeare WC, Hicklin DJ, Ellis LM, Gallick GE. Vascular endothelial growth factor receptor-1 mediates migration of human colorectal carcinoma cells by activation of Src family kinases. Br J Cancer. 2006 Jun 5;94(11):1710-7. PMID:16685275 doi:10.1038/sj.bjc.6603143
  15. Tchaikovski V, Fellbrich G, Waltenberger J. The molecular basis of VEGFR-1 signal transduction pathways in primary human monocytes. Arterioscler Thromb Vasc Biol. 2008 Feb;28(2):322-8. Epub 2007 Dec 13. PMID:18079407 doi:10.1161/ATVBAHA.107.158022
  16. Nishi J, Minamino T, Miyauchi H, Nojima A, Tateno K, Okada S, Orimo M, Moriya J, Fong GH, Sunagawa K, Shibuya M, Komuro I. Vascular endothelial growth factor receptor-1 regulates postnatal angiogenesis through inhibition of the excessive activation of Akt. Circ Res. 2008 Aug 1;103(3):261-8. doi: 10.1161/CIRCRESAHA.108.174128. Epub 2008 , Jun 26. PMID:18583712 doi:10.1161/CIRCRESAHA.108.174128
  17. Taylor AP, Leon E, Goldenberg DM. Placental growth factor (PlGF) enhances breast cancer cell motility by mobilising ERK1/2 phosphorylation and cytoskeletal rearrangement. Br J Cancer. 2010 Jun 29;103(1):82-9. doi: 10.1038/sj.bjc.6605746. Epub 2010 Jun , 15. PMID:20551949 doi:10.1038/sj.bjc.6605746
  18. Ahmad S, Hewett PW, Al-Ani B, Sissaoui S, Fujisawa T, Cudmore MJ, Ahmed A. Autocrine activity of soluble Flt-1 controls endothelial cell function and angiogenesis. Vasc Cell. 2011 Jul 13;3(1):15. doi: 10.1186/2045-824X-3-15. PMID:21752276 doi:10.1186/2045-824X-3-15
  19. Iyer S, Darley PI, Acharya KR. Structural insights into the binding of vascular endothelial growth factor-B by VEGFR-1(D2): recognition and specificity. J Biol Chem. 2010 Jul 30;285(31):23779-89. Epub 2010 May 25. PMID:20501651 doi:10.1074/jbc.M110.130658

2xac, resolution 2.71Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA