2l1r: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==The structure of the calcium-sensitizer, dfbp-o, in complex with the N-domain of troponin C and the switch region of troponin I== | |||
<StructureSection load='2l1r' size='340' side='right' caption='[[2l1r]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2l1r]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2L1R OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2L1R FirstGlance]. <br> | |||
==Disease== | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=SXK:[(2,4-DIFLUOROBIPHENYL-4-YL)OXY]ACETIC+ACID'>SXK</scene></td></tr> | ||
[[http://www.uniprot.org/uniprot/TNNC1_HUMAN TNNC1_HUMAN]] Defects in TNNC1 are the cause of cardiomyopathy dilated type 1Z (CMD1Z) [MIM:[http://omim.org/entry/611879 611879]]. Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death.<ref>PMID:15542288</ref> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2krd|2krd]], [[1lxf|1lxf]], [[1ytz|1ytz]], [[1dtl|1dtl]], [[1wrk|1wrk]], [[2kfx|2kfx]]</td></tr> | ||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">TNNC1, TNNC ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2l1r FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2l1r OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2l1r RCSB], [http://www.ebi.ac.uk/pdbsum/2l1r PDBsum]</span></td></tr> | |||
</table> | |||
== Disease == | |||
[[http://www.uniprot.org/uniprot/TNNC1_HUMAN TNNC1_HUMAN]] Defects in TNNC1 are the cause of cardiomyopathy dilated type 1Z (CMD1Z) [MIM:[http://omim.org/entry/611879 611879]]. Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death.<ref>PMID:15542288</ref> Defects in TNNC1 are the cause of familial hypertrophic cardiomyopathy type 13 (CMH13) [MIM:[http://omim.org/entry/613243 613243]]. A hereditary heart disorder characterized by ventricular hypertrophy, which is usually asymmetric and often involves the interventricular septum. The symptoms include dyspnea, syncope, collapse, palpitations, and chest pain. They can be readily provoked by exercise. The disorder has inter- and intrafamilial variability ranging from benign to malignant forms with high risk of cardiac failure and sudden cardiac death.<ref>PMID:11385718</ref> <ref>PMID:16302972</ref> <ref>PMID:18572189</ref> <ref>PMID:19439414</ref> [[http://www.uniprot.org/uniprot/TNNI3_HUMAN TNNI3_HUMAN]] Defects in TNNI3 are the cause of familial hypertrophic cardiomyopathy type 7 (CMH7) [MIM:[http://omim.org/entry/613690 613690]]. Familial hypertrophic cardiomyopathy is a hereditary heart disorder characterized by ventricular hypertrophy, which is usually asymmetric and often involves the interventricular septum. The symptoms include dyspnea, syncope, collapse, palpitations, and chest pain. They can be readily provoked by exercise. The disorder has inter- and intrafamilial variability ranging from benign to malignant forms with high risk of cardiac failure and sudden cardiac death.<ref>PMID:9241277</ref> <ref>PMID:11815426</ref> <ref>PMID:12707239</ref> <ref>PMID:12974739</ref> <ref>PMID:16199542</ref> Defects in TNNI3 are the cause of familial restrictive cardiomyopathy type 1 (RCM1) [MIM:[http://omim.org/entry/115210 115210]]. RCM1 is a heart muscle disorder characterized by impaired filling of the ventricles with reduced diastolic volume, in the presence of normal or near normal wall thickness and systolic function.<ref>PMID:12531876</ref> Defects in TNNI3 are the cause of cardiomyopathy dilated type 2A (CMD2A) [MIM:[http://omim.org/entry/611880 611880]]. Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death.<ref>PMID:15070570</ref> Defects in TNNI3 are the cause of cardiomyopathy dilated type 1FF (CMD1FF) [MIM:[http://omim.org/entry/613286 613286]]. Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death. | |||
== Function == | |||
[[http://www.uniprot.org/uniprot/TNNC1_HUMAN TNNC1_HUMAN]] Troponin is the central regulatory protein of striated muscle contraction. Tn consists of three components: Tn-I which is the inhibitor of actomyosin ATPase, Tn-T which contains the binding site for tropomyosin and Tn-C. The binding of calcium to Tn-C abolishes the inhibitory action of Tn on actin filaments. [[http://www.uniprot.org/uniprot/TNNI3_HUMAN TNNI3_HUMAN]] Troponin I is the inhibitory subunit of troponin, the thin filament regulatory complex which confers calcium-sensitivity to striated muscle actomyosin ATPase activity. | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/l1/2l1r_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The Ca(2+) dependant interaction between troponin I (cTnI) and troponin C (cTnC) triggers contraction in heart muscle. Heart failure is characterized by a decrease in cardiac output, and compounds that increase the sensitivity of cardiac muscle to Ca(2+) have therapeutic potential. The Ca(2+)-sensitizer, levosimendan, targets cTnC; however, detailed understanding of its mechanism has been obscured by its instability. In order to understand how this class of positive inotropes function, we investigated the mode of action of two fluorine containing novel analogs of levosimendan; 2',4'-difluoro(1,1'-biphenyl)-4-yloxy acetic acid (dfbp-o) and 2',4'-difluoro(1,1'-biphenyl)-4-yl acetic acid (dfbp). The affinities of dfbp and dfbp-o for the regulatory domain of cTnC were measured in the absence and presence of cTnI by NMR spectroscopy, and dfbp-o was found to bind more strongly than dfbp. Dfbp-o also increased the affinity of cTnI for cTnC. Dfbp-o increased the Ca(2+)-sensitivity of demembranated cardiac trabeculae in a manner similar to levosimendan. The high resolution NMR solution structure of the cTnC-cTnI-dfbp-o ternary complex showed that dfbp-o bound at the hydrophobic interface formed by cTnC and cTnI making critical interactions with residues such as Arg147 of cTnI. In the absence of cTnI, docking localized dfbp-o to the same position in the hydrophobic groove of cTnC. The structural and functional data reveal that the levosimendan class of Ca(2+/-)-sensitizers work by binding to the regulatory domain of cTnC and stabilizing the pivotal cTnC-cTnI regulatory unit via a network of hydrophobic and electrostatic interactions, in contrast to the destabilizing effects of antagonists such as W7 at the same interface. | |||
A structural and functional perspective into the mechanism of Ca(2+)-sensitizers that target the cardiac troponin complex.,Robertson IM, Sun YB, Li MX, Sykes BD J Mol Cell Cardiol. 2010 Aug 27. PMID:20801130<ref>PMID:20801130</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | ==See Also== | ||
*[[Troponin|Troponin]] | *[[Troponin|Troponin]] | ||
== References == | |||
== | <references/> | ||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: Li, M X | [[Category: Li, M X]] | ||
[[Category: Robertson, I M | [[Category: Robertson, I M]] | ||
[[Category: Sun, Y | [[Category: Sun, Y]] | ||
[[Category: Sykes, B D | [[Category: Sykes, B D]] | ||
[[Category: Ca2+-sensitizer]] | [[Category: Ca2+-sensitizer]] | ||
[[Category: Dfbp-o]] | [[Category: Dfbp-o]] |
Revision as of 14:45, 18 December 2014
The structure of the calcium-sensitizer, dfbp-o, in complex with the N-domain of troponin C and the switch region of troponin IThe structure of the calcium-sensitizer, dfbp-o, in complex with the N-domain of troponin C and the switch region of troponin I
Structural highlights
Disease[TNNC1_HUMAN] Defects in TNNC1 are the cause of cardiomyopathy dilated type 1Z (CMD1Z) [MIM:611879]. Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death.[1] Defects in TNNC1 are the cause of familial hypertrophic cardiomyopathy type 13 (CMH13) [MIM:613243]. A hereditary heart disorder characterized by ventricular hypertrophy, which is usually asymmetric and often involves the interventricular septum. The symptoms include dyspnea, syncope, collapse, palpitations, and chest pain. They can be readily provoked by exercise. The disorder has inter- and intrafamilial variability ranging from benign to malignant forms with high risk of cardiac failure and sudden cardiac death.[2] [3] [4] [5] [TNNI3_HUMAN] Defects in TNNI3 are the cause of familial hypertrophic cardiomyopathy type 7 (CMH7) [MIM:613690]. Familial hypertrophic cardiomyopathy is a hereditary heart disorder characterized by ventricular hypertrophy, which is usually asymmetric and often involves the interventricular septum. The symptoms include dyspnea, syncope, collapse, palpitations, and chest pain. They can be readily provoked by exercise. The disorder has inter- and intrafamilial variability ranging from benign to malignant forms with high risk of cardiac failure and sudden cardiac death.[6] [7] [8] [9] [10] Defects in TNNI3 are the cause of familial restrictive cardiomyopathy type 1 (RCM1) [MIM:115210]. RCM1 is a heart muscle disorder characterized by impaired filling of the ventricles with reduced diastolic volume, in the presence of normal or near normal wall thickness and systolic function.[11] Defects in TNNI3 are the cause of cardiomyopathy dilated type 2A (CMD2A) [MIM:611880]. Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death.[12] Defects in TNNI3 are the cause of cardiomyopathy dilated type 1FF (CMD1FF) [MIM:613286]. Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death. Function[TNNC1_HUMAN] Troponin is the central regulatory protein of striated muscle contraction. Tn consists of three components: Tn-I which is the inhibitor of actomyosin ATPase, Tn-T which contains the binding site for tropomyosin and Tn-C. The binding of calcium to Tn-C abolishes the inhibitory action of Tn on actin filaments. [TNNI3_HUMAN] Troponin I is the inhibitory subunit of troponin, the thin filament regulatory complex which confers calcium-sensitivity to striated muscle actomyosin ATPase activity. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe Ca(2+) dependant interaction between troponin I (cTnI) and troponin C (cTnC) triggers contraction in heart muscle. Heart failure is characterized by a decrease in cardiac output, and compounds that increase the sensitivity of cardiac muscle to Ca(2+) have therapeutic potential. The Ca(2+)-sensitizer, levosimendan, targets cTnC; however, detailed understanding of its mechanism has been obscured by its instability. In order to understand how this class of positive inotropes function, we investigated the mode of action of two fluorine containing novel analogs of levosimendan; 2',4'-difluoro(1,1'-biphenyl)-4-yloxy acetic acid (dfbp-o) and 2',4'-difluoro(1,1'-biphenyl)-4-yl acetic acid (dfbp). The affinities of dfbp and dfbp-o for the regulatory domain of cTnC were measured in the absence and presence of cTnI by NMR spectroscopy, and dfbp-o was found to bind more strongly than dfbp. Dfbp-o also increased the affinity of cTnI for cTnC. Dfbp-o increased the Ca(2+)-sensitivity of demembranated cardiac trabeculae in a manner similar to levosimendan. The high resolution NMR solution structure of the cTnC-cTnI-dfbp-o ternary complex showed that dfbp-o bound at the hydrophobic interface formed by cTnC and cTnI making critical interactions with residues such as Arg147 of cTnI. In the absence of cTnI, docking localized dfbp-o to the same position in the hydrophobic groove of cTnC. The structural and functional data reveal that the levosimendan class of Ca(2+/-)-sensitizers work by binding to the regulatory domain of cTnC and stabilizing the pivotal cTnC-cTnI regulatory unit via a network of hydrophobic and electrostatic interactions, in contrast to the destabilizing effects of antagonists such as W7 at the same interface. A structural and functional perspective into the mechanism of Ca(2+)-sensitizers that target the cardiac troponin complex.,Robertson IM, Sun YB, Li MX, Sykes BD J Mol Cell Cardiol. 2010 Aug 27. PMID:20801130[13] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|