4d03: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
''' | ==Structure of the Cys65Asp mutant of phenylacetone monooxygenase: oxidised state== | ||
<StructureSection load='4d03' size='340' side='right' caption='[[4d03]], [[Resolution|resolution]] 1.81Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[4d03]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4D03 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4D03 FirstGlance]. <br> | |||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=FAD:FLAVIN-ADENINE+DINUCLEOTIDE'>FAD</scene>, <scene name='pdbligand=NAP:NADP+NICOTINAMIDE-ADENINE-DINUCLEOTIDE+PHOSPHATE'>NAP</scene>, <scene name='pdbligand=P6G:HEXAETHYLENE+GLYCOL'>P6G</scene></td></tr> | |||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4czz|4czz]], [[4d04|4d04]]</td></tr> | |||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Phenylacetone_monooxygenase Phenylacetone monooxygenase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.14.13.92 1.14.13.92] </span></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4d03 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4d03 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4d03 RCSB], [http://www.ebi.ac.uk/pdbsum/4d03 PDBsum]</span></td></tr> | |||
</table> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
By a targeted enzyme engineering approach, we were able to create an efficient NADPH oxidase from a monooxygenase. Intriguingly, replacement of only one specific single amino acid was sufficient for such a monooxygenase-to-oxidase switch-a complete transition in enzyme activity. Pre-steady-state kinetic analysis and elucidation of the crystal structure of the C65D PAMO mutant revealed that the mutation introduces small changes near the flavin cofactor, resulting in a rapid decay of the peroxyflavin intermediate. The engineered biocatalyst was shown to be a thermostable, solvent tolerant, and effective cofactor-regenerating biocatalyst. Therefore, it represents a valuable new biocatalytic tool. | |||
Finding the Switch: Turning a Baeyer-Villiger Monooxygenase into a NADPH Oxidase.,Brondani PB, Dudek HM, Martinoli C, Mattevi A, Fraaije MW J Am Chem Soc. 2014 Dec 1. PMID:25423359<ref>PMID:25423359</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Phenylacetone monooxygenase]] | |||
[[Category: Brondani, P B]] | |||
[[Category: Dudek, H M]] | |||
[[Category: Fraaije, M W]] | |||
[[Category: Martinoli, C]] | |||
[[Category: Mattevi, A]] | |||
[[Category: Biocatalysis]] | |||
[[Category: Oxidoreductase]] |
Revision as of 19:02, 10 December 2014
Structure of the Cys65Asp mutant of phenylacetone monooxygenase: oxidised stateStructure of the Cys65Asp mutant of phenylacetone monooxygenase: oxidised state
Structural highlights
Publication Abstract from PubMedBy a targeted enzyme engineering approach, we were able to create an efficient NADPH oxidase from a monooxygenase. Intriguingly, replacement of only one specific single amino acid was sufficient for such a monooxygenase-to-oxidase switch-a complete transition in enzyme activity. Pre-steady-state kinetic analysis and elucidation of the crystal structure of the C65D PAMO mutant revealed that the mutation introduces small changes near the flavin cofactor, resulting in a rapid decay of the peroxyflavin intermediate. The engineered biocatalyst was shown to be a thermostable, solvent tolerant, and effective cofactor-regenerating biocatalyst. Therefore, it represents a valuable new biocatalytic tool. Finding the Switch: Turning a Baeyer-Villiger Monooxygenase into a NADPH Oxidase.,Brondani PB, Dudek HM, Martinoli C, Mattevi A, Fraaije MW J Am Chem Soc. 2014 Dec 1. PMID:25423359[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|