4em9: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
[[Image:4em9.jpg|left|200px]]
==Human PPAR gamma in complex with nonanoic acids==
<StructureSection load='4em9' size='340' side='right' caption='[[4em9]], [[Resolution|resolution]] 2.10&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[4em9]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4EM9 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4EM9 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=KNA:NONANOIC+ACID'>KNA</scene>, <scene name='pdbligand=TCE:3,3,3-PHOSPHANETRIYLTRIPROPANOIC+ACID'>TCE</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2vv1|2vv1]], [[1prg|1prg]], [[3gwx|3gwx]], [[1zeo|1zeo]], [[3dzu|3dzu]], [[3dzy|3dzy]], [[4ema|4ema]]</td></tr>
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">PPARG, NR1C3 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4em9 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4em9 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4em9 RCSB], [http://www.ebi.ac.uk/pdbsum/4em9 PDBsum]</span></td></tr>
</table>
== Disease ==
[[http://www.uniprot.org/uniprot/PPARG_HUMAN PPARG_HUMAN]] Note=Defects in PPARG can lead to type 2 insulin-resistant diabetes and hyptertension. PPARG mutations may be associated with colon cancer.  Defects in PPARG may be associated with susceptibility to obesity (OBESITY) [MIM:[http://omim.org/entry/601665 601665]]. It is a condition characterized by an increase of body weight beyond the limitation of skeletal and physical requirements, as the result of excessive accumulation of body fat.<ref>PMID:9753710</ref>  Defects in PPARG are the cause of familial partial lipodystrophy type 3 (FPLD3) [MIM:[http://omim.org/entry/604367 604367]]. Familial partial lipodystrophies (FPLD) are a heterogeneous group of genetic disorders characterized by marked loss of subcutaneous (sc) fat from the extremities. Affected individuals show an increased preponderance of insulin resistance, diabetes mellitus and dyslipidemia.<ref>PMID:12453919</ref> <ref>PMID:11788685</ref>  Genetic variations in PPARG can be associated with susceptibility to glioma type 1 (GLM1) [MIM:[http://omim.org/entry/137800 137800]]. Gliomas are central nervous system neoplasms derived from glial cells and comprise astrocytomas, glioblastoma multiforme, oligodendrogliomas, and ependymomas. Note=Polymorphic PPARG alleles have been found to be significantly over-represented among a cohort of American patients with sporadic glioblastoma multiforme suggesting a possible contribution to disease susceptibility.
== Function ==
[[http://www.uniprot.org/uniprot/PPARG_HUMAN PPARG_HUMAN]] Receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the receptor binds to a promoter element in the gene for acyl-CoA oxidase and activates its transcription. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis. Acts as a critical regulator of gut homeostasis by suppressing NF-kappa-B-mediated proinflammatory responses.<ref>PMID:9065481</ref> <ref>PMID:16150867</ref> <ref>PMID:20829347</ref> 
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Thiazolidinediones (TZDs) act through peroxisome proliferator activated receptor (PPAR) gamma to increase insulin sensitivity in type 2 diabetes (T2DM), but deleterious effects of these ligands mean that selective modulators with improved clinical profiles are needed. We obtained a crystal structure of PPARgamma ligand binding domain (LBD) and found that the ligand binding pocket (LBP) is occupied by bacterial medium chain fatty acids (MCFAs). We verified that MCFAs (C8-C10) bind the PPARgamma LBD in vitro and showed that they are low-potency partial agonists that display assay-specific actions relative to TZDs; they act as very weak partial agonists in transfections with PPARgamma LBD, stronger partial agonists with full length PPARgamma and exhibit full blockade of PPARgamma phosphorylation by cyclin-dependent kinase 5 (cdk5), linked to reversal of adipose tissue insulin resistance. MCFAs that bind PPARgamma also antagonize TZD-dependent adipogenesis in vitro. X-ray structure B-factor analysis and molecular dynamics (MD) simulations suggest that MCFAs weakly stabilize C-terminal activation helix (H) 12 relative to TZDs and this effect is highly dependent on chain length. By contrast, MCFAs preferentially stabilize the H2-H3/beta-sheet region and the helix (H) 11-H12 loop relative to TZDs and we propose that MCFA assay-specific actions are linked to their unique binding mode and suggest that it may be possible to identify selective PPARgamma modulators with useful clinical profiles among natural products.


{{STRUCTURE_4em9|  PDB=4em9  |  SCENE=  }}
Medium chain fatty acids are selective peroxisome proliferator activated receptor (PPAR) gamma activators and pan-PPAR partial agonists.,Liberato MV, Nascimento AS, Ayers SD, Lin JZ, Cvoro A, Silveira RL, Martinez L, Souza PC, Saidemberg D, Deng T, Amato AA, Togashi M, Hsueh WA, Phillips K, Palma MS, Neves FA, Skaf MS, Webb P, Polikarpov I PLoS One. 2012;7(5):e36297. doi: 10.1371/journal.pone.0036297. Epub 2012 May 23. PMID:22649490<ref>PMID:22649490</ref>


===Human PPAR gamma in complex with nonanoic acids===
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>


{{ABSTRACT_PUBMED_22649490}}
==See Also==
 
*[[Peroxisome Proliferator-Activated Receptors|Peroxisome Proliferator-Activated Receptors]]
==About this Structure==
== References ==
[[4em9]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4EM9 OCA].
<references/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Liberato, M V.]]
[[Category: Liberato, M V]]
[[Category: Nascimento, A S.]]
[[Category: Nascimento, A S]]
[[Category: Polikarpov, I.]]
[[Category: Polikarpov, I]]
[[Category: Nuclear receptor]]
[[Category: Nuclear receptor]]
[[Category: Nucleus]]
[[Category: Nucleus]]
[[Category: Retinoic acid receptor]]
[[Category: Retinoic acid receptor]]
[[Category: Transcription]]
[[Category: Transcription]]

Revision as of 17:53, 9 December 2014

Human PPAR gamma in complex with nonanoic acidsHuman PPAR gamma in complex with nonanoic acids

Structural highlights

4em9 is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, ,
Gene:PPARG, NR1C3 (Homo sapiens)
Resources:FirstGlance, OCA, RCSB, PDBsum

Disease

[PPARG_HUMAN] Note=Defects in PPARG can lead to type 2 insulin-resistant diabetes and hyptertension. PPARG mutations may be associated with colon cancer. Defects in PPARG may be associated with susceptibility to obesity (OBESITY) [MIM:601665]. It is a condition characterized by an increase of body weight beyond the limitation of skeletal and physical requirements, as the result of excessive accumulation of body fat.[1] Defects in PPARG are the cause of familial partial lipodystrophy type 3 (FPLD3) [MIM:604367]. Familial partial lipodystrophies (FPLD) are a heterogeneous group of genetic disorders characterized by marked loss of subcutaneous (sc) fat from the extremities. Affected individuals show an increased preponderance of insulin resistance, diabetes mellitus and dyslipidemia.[2] [3] Genetic variations in PPARG can be associated with susceptibility to glioma type 1 (GLM1) [MIM:137800]. Gliomas are central nervous system neoplasms derived from glial cells and comprise astrocytomas, glioblastoma multiforme, oligodendrogliomas, and ependymomas. Note=Polymorphic PPARG alleles have been found to be significantly over-represented among a cohort of American patients with sporadic glioblastoma multiforme suggesting a possible contribution to disease susceptibility.

Function

[PPARG_HUMAN] Receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the receptor binds to a promoter element in the gene for acyl-CoA oxidase and activates its transcription. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis. Acts as a critical regulator of gut homeostasis by suppressing NF-kappa-B-mediated proinflammatory responses.[4] [5] [6]

Publication Abstract from PubMed

Thiazolidinediones (TZDs) act through peroxisome proliferator activated receptor (PPAR) gamma to increase insulin sensitivity in type 2 diabetes (T2DM), but deleterious effects of these ligands mean that selective modulators with improved clinical profiles are needed. We obtained a crystal structure of PPARgamma ligand binding domain (LBD) and found that the ligand binding pocket (LBP) is occupied by bacterial medium chain fatty acids (MCFAs). We verified that MCFAs (C8-C10) bind the PPARgamma LBD in vitro and showed that they are low-potency partial agonists that display assay-specific actions relative to TZDs; they act as very weak partial agonists in transfections with PPARgamma LBD, stronger partial agonists with full length PPARgamma and exhibit full blockade of PPARgamma phosphorylation by cyclin-dependent kinase 5 (cdk5), linked to reversal of adipose tissue insulin resistance. MCFAs that bind PPARgamma also antagonize TZD-dependent adipogenesis in vitro. X-ray structure B-factor analysis and molecular dynamics (MD) simulations suggest that MCFAs weakly stabilize C-terminal activation helix (H) 12 relative to TZDs and this effect is highly dependent on chain length. By contrast, MCFAs preferentially stabilize the H2-H3/beta-sheet region and the helix (H) 11-H12 loop relative to TZDs and we propose that MCFA assay-specific actions are linked to their unique binding mode and suggest that it may be possible to identify selective PPARgamma modulators with useful clinical profiles among natural products.

Medium chain fatty acids are selective peroxisome proliferator activated receptor (PPAR) gamma activators and pan-PPAR partial agonists.,Liberato MV, Nascimento AS, Ayers SD, Lin JZ, Cvoro A, Silveira RL, Martinez L, Souza PC, Saidemberg D, Deng T, Amato AA, Togashi M, Hsueh WA, Phillips K, Palma MS, Neves FA, Skaf MS, Webb P, Polikarpov I PLoS One. 2012;7(5):e36297. doi: 10.1371/journal.pone.0036297. Epub 2012 May 23. PMID:22649490[7]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Ristow M, Muller-Wieland D, Pfeiffer A, Krone W, Kahn CR. Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. N Engl J Med. 1998 Oct 1;339(14):953-9. PMID:9753710 doi:10.1056/NEJM199810013391403
  2. Hegele RA, Cao H, Frankowski C, Mathews ST, Leff T. PPARG F388L, a transactivation-deficient mutant, in familial partial lipodystrophy. Diabetes. 2002 Dec;51(12):3586-90. PMID:12453919
  3. Agarwal AK, Garg A. A novel heterozygous mutation in peroxisome proliferator-activated receptor-gamma gene in a patient with familial partial lipodystrophy. J Clin Endocrinol Metab. 2002 Jan;87(1):408-11. PMID:11788685
  4. Mukherjee R, Jow L, Croston GE, Paterniti JR Jr. Identification, characterization, and tissue distribution of human peroxisome proliferator-activated receptor (PPAR) isoforms PPARgamma2 versus PPARgamma1 and activation with retinoid X receptor agonists and antagonists. J Biol Chem. 1997 Mar 21;272(12):8071-6. PMID:9065481
  5. Yin Y, Yuan H, Wang C, Pattabiraman N, Rao M, Pestell RG, Glazer RI. 3-phosphoinositide-dependent protein kinase-1 activates the peroxisome proliferator-activated receptor-gamma and promotes adipocyte differentiation. Mol Endocrinol. 2006 Feb;20(2):268-78. Epub 2005 Sep 8. PMID:16150867 doi:10.1210/me.2005-0197
  6. Park SH, Choi HJ, Yang H, Do KH, Kim J, Lee DW, Moon Y. Endoplasmic reticulum stress-activated C/EBP homologous protein enhances nuclear factor-kappaB signals via repression of peroxisome proliferator-activated receptor gamma. J Biol Chem. 2010 Nov 12;285(46):35330-9. doi: 10.1074/jbc.M110.136259. Epub 2010, Sep 9. PMID:20829347 doi:10.1074/jbc.M110.136259
  7. Liberato MV, Nascimento AS, Ayers SD, Lin JZ, Cvoro A, Silveira RL, Martinez L, Souza PC, Saidemberg D, Deng T, Amato AA, Togashi M, Hsueh WA, Phillips K, Palma MS, Neves FA, Skaf MS, Webb P, Polikarpov I. Medium chain fatty acids are selective peroxisome proliferator activated receptor (PPAR) gamma activators and pan-PPAR partial agonists. PLoS One. 2012;7(5):e36297. doi: 10.1371/journal.pone.0036297. Epub 2012 May 23. PMID:22649490 doi:http://dx.doi.org/10.1371/journal.pone.0036297

4em9, resolution 2.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA