3daa: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
m Protected "3daa" [edit=sysop:move=sysop]
No edit summary
Line 1: Line 1:
[[Image:3daa.png|left|200px]]
==CRYSTALLOGRAPHIC STRUCTURE OF D-AMINO ACID AMINOTRANSFERASE INACTIVATED BY PYRIDOXYL-D-ALANINE==
<StructureSection load='3daa' size='340' side='right' caption='[[3daa]], [[Resolution|resolution]] 1.90&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[3daa]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Bacillus_sp. Bacillus sp.]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3DAA OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3DAA FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=PDD:N-(5-PHOSPHOPYRIDOXYL)-D-ALANINE'>PDD</scene></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/D-amino-acid_transaminase D-amino-acid transaminase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.6.1.21 2.6.1.21] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3daa FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3daa OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3daa RCSB], [http://www.ebi.ac.uk/pdbsum/3daa PDBsum]</span></td></tr>
</table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/da/3daa_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
The three-dimensional structures of two forms of the D-amino acid aminotransferase (D-aAT) from Bacillus sp. YM-1 have been determined crystallographically: the pyridoxal phosphate (PLP) form and a complex with the reduced analogue of the external aldimine, N-(5'-phosphopyridoxyl)-d-alanine (PPDA). Together with the previously reported pyridoxamine phosphate form of the enzyme [Sugio et al. (1995) Biochemistry 34, 9661], these structures allow us to describe the pathway of the enzymatic reaction in structural terms. A major determinant of the enzyme's stereospecificity for D-amino acids is a group of three residues (Tyr30, Arg98, and His100, with the latter two contributed by the neighboring subunit) forming four hydrogen bonds to the substrate alpha-carboxyl group. The replacement by hydrophobic groups of the homologous residues of the branched chain L-amino acid aminotransferase (which has a similar fold) could explain its opposite stereospecificity. As in L-aspartate aminotransferase (L-AspAT), the cofactor in D-aAT tilts (around its phosphate group and N1 as pivots) away from the catalytic lysine 145 and the protein face in the course of the reaction. Unlike L-AspAT, D-aAT shows no other significant conformational changes during the reaction.


{{STRUCTURE_3daa|  PDB=3daa  |  SCENE=  }}
Crystallographic study of steps along the reaction pathway of D-amino acid aminotransferase.,Peisach D, Chipman DM, Van Ophem PW, Manning JM, Ringe D Biochemistry. 1998 Apr 7;37(14):4958-67. PMID:9538014<ref>PMID:9538014</ref>


===CRYSTALLOGRAPHIC STRUCTURE OF D-AMINO ACID AMINOTRANSFERASE INACTIVATED BY PYRIDOXYL-D-ALANINE===
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
{{ABSTRACT_PUBMED_9538014}}
== References ==
 
<references/>
==About this Structure==
__TOC__
[[3daa]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Bacillus_sp. Bacillus sp.]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3DAA OCA].
</StructureSection>
 
[[Category: Bacillus sp]]
==Reference==
<ref group="xtra">PMID:009538014</ref><ref group="xtra">PMID:011264579</ref><references group="xtra"/>
[[Category: Bacillus sp.]]
[[Category: D-amino-acid transaminase]]
[[Category: D-amino-acid transaminase]]
[[Category: Chipman, D M.]]
[[Category: Chipman, D M]]
[[Category: Peisach, D.]]
[[Category: Peisach, D]]
[[Category: Ringe, D.]]
[[Category: Ringe, D]]
[[Category: Aminotransferase]]
[[Category: Aminotransferase]]
[[Category: Pyridoxal phosphate]]
[[Category: Pyridoxal phosphate]]
[[Category: Transaminase]]
[[Category: Transaminase]]

Revision as of 11:13, 12 November 2014

CRYSTALLOGRAPHIC STRUCTURE OF D-AMINO ACID AMINOTRANSFERASE INACTIVATED BY PYRIDOXYL-D-ALANINECRYSTALLOGRAPHIC STRUCTURE OF D-AMINO ACID AMINOTRANSFERASE INACTIVATED BY PYRIDOXYL-D-ALANINE

Structural highlights

3daa is a 2 chain structure with sequence from Bacillus sp.. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Activity:D-amino-acid transaminase, with EC number 2.6.1.21
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The three-dimensional structures of two forms of the D-amino acid aminotransferase (D-aAT) from Bacillus sp. YM-1 have been determined crystallographically: the pyridoxal phosphate (PLP) form and a complex with the reduced analogue of the external aldimine, N-(5'-phosphopyridoxyl)-d-alanine (PPDA). Together with the previously reported pyridoxamine phosphate form of the enzyme [Sugio et al. (1995) Biochemistry 34, 9661], these structures allow us to describe the pathway of the enzymatic reaction in structural terms. A major determinant of the enzyme's stereospecificity for D-amino acids is a group of three residues (Tyr30, Arg98, and His100, with the latter two contributed by the neighboring subunit) forming four hydrogen bonds to the substrate alpha-carboxyl group. The replacement by hydrophobic groups of the homologous residues of the branched chain L-amino acid aminotransferase (which has a similar fold) could explain its opposite stereospecificity. As in L-aspartate aminotransferase (L-AspAT), the cofactor in D-aAT tilts (around its phosphate group and N1 as pivots) away from the catalytic lysine 145 and the protein face in the course of the reaction. Unlike L-AspAT, D-aAT shows no other significant conformational changes during the reaction.

Crystallographic study of steps along the reaction pathway of D-amino acid aminotransferase.,Peisach D, Chipman DM, Van Ophem PW, Manning JM, Ringe D Biochemistry. 1998 Apr 7;37(14):4958-67. PMID:9538014[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Peisach D, Chipman DM, Van Ophem PW, Manning JM, Ringe D. Crystallographic study of steps along the reaction pathway of D-amino acid aminotransferase. Biochemistry. 1998 Apr 7;37(14):4958-67. PMID:9538014 doi:10.1021/bi972884d

3daa, resolution 1.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA