3daa: Difference between revisions
m Protected "3daa" [edit=sysop:move=sysop] |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==CRYSTALLOGRAPHIC STRUCTURE OF D-AMINO ACID AMINOTRANSFERASE INACTIVATED BY PYRIDOXYL-D-ALANINE== | ||
<StructureSection load='3daa' size='340' side='right' caption='[[3daa]], [[Resolution|resolution]] 1.90Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[3daa]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Bacillus_sp. Bacillus sp.]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3DAA OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3DAA FirstGlance]. <br> | |||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=PDD:N-(5-PHOSPHOPYRIDOXYL)-D-ALANINE'>PDD</scene></td></tr> | |||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/D-amino-acid_transaminase D-amino-acid transaminase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.6.1.21 2.6.1.21] </span></td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3daa FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3daa OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3daa RCSB], [http://www.ebi.ac.uk/pdbsum/3daa PDBsum]</span></td></tr> | |||
</table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/da/3daa_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The three-dimensional structures of two forms of the D-amino acid aminotransferase (D-aAT) from Bacillus sp. YM-1 have been determined crystallographically: the pyridoxal phosphate (PLP) form and a complex with the reduced analogue of the external aldimine, N-(5'-phosphopyridoxyl)-d-alanine (PPDA). Together with the previously reported pyridoxamine phosphate form of the enzyme [Sugio et al. (1995) Biochemistry 34, 9661], these structures allow us to describe the pathway of the enzymatic reaction in structural terms. A major determinant of the enzyme's stereospecificity for D-amino acids is a group of three residues (Tyr30, Arg98, and His100, with the latter two contributed by the neighboring subunit) forming four hydrogen bonds to the substrate alpha-carboxyl group. The replacement by hydrophobic groups of the homologous residues of the branched chain L-amino acid aminotransferase (which has a similar fold) could explain its opposite stereospecificity. As in L-aspartate aminotransferase (L-AspAT), the cofactor in D-aAT tilts (around its phosphate group and N1 as pivots) away from the catalytic lysine 145 and the protein face in the course of the reaction. Unlike L-AspAT, D-aAT shows no other significant conformational changes during the reaction. | |||
Crystallographic study of steps along the reaction pathway of D-amino acid aminotransferase.,Peisach D, Chipman DM, Van Ophem PW, Manning JM, Ringe D Biochemistry. 1998 Apr 7;37(14):4958-67. PMID:9538014<ref>PMID:9538014</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Bacillus sp]] | |||
== | |||
< | |||
[[Category: Bacillus sp | |||
[[Category: D-amino-acid transaminase]] | [[Category: D-amino-acid transaminase]] | ||
[[Category: Chipman, D M | [[Category: Chipman, D M]] | ||
[[Category: Peisach, D | [[Category: Peisach, D]] | ||
[[Category: Ringe, D | [[Category: Ringe, D]] | ||
[[Category: Aminotransferase]] | [[Category: Aminotransferase]] | ||
[[Category: Pyridoxal phosphate]] | [[Category: Pyridoxal phosphate]] | ||
[[Category: Transaminase]] | [[Category: Transaminase]] |
Revision as of 11:13, 12 November 2014
CRYSTALLOGRAPHIC STRUCTURE OF D-AMINO ACID AMINOTRANSFERASE INACTIVATED BY PYRIDOXYL-D-ALANINECRYSTALLOGRAPHIC STRUCTURE OF D-AMINO ACID AMINOTRANSFERASE INACTIVATED BY PYRIDOXYL-D-ALANINE
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe three-dimensional structures of two forms of the D-amino acid aminotransferase (D-aAT) from Bacillus sp. YM-1 have been determined crystallographically: the pyridoxal phosphate (PLP) form and a complex with the reduced analogue of the external aldimine, N-(5'-phosphopyridoxyl)-d-alanine (PPDA). Together with the previously reported pyridoxamine phosphate form of the enzyme [Sugio et al. (1995) Biochemistry 34, 9661], these structures allow us to describe the pathway of the enzymatic reaction in structural terms. A major determinant of the enzyme's stereospecificity for D-amino acids is a group of three residues (Tyr30, Arg98, and His100, with the latter two contributed by the neighboring subunit) forming four hydrogen bonds to the substrate alpha-carboxyl group. The replacement by hydrophobic groups of the homologous residues of the branched chain L-amino acid aminotransferase (which has a similar fold) could explain its opposite stereospecificity. As in L-aspartate aminotransferase (L-AspAT), the cofactor in D-aAT tilts (around its phosphate group and N1 as pivots) away from the catalytic lysine 145 and the protein face in the course of the reaction. Unlike L-AspAT, D-aAT shows no other significant conformational changes during the reaction. Crystallographic study of steps along the reaction pathway of D-amino acid aminotransferase.,Peisach D, Chipman DM, Van Ophem PW, Manning JM, Ringe D Biochemistry. 1998 Apr 7;37(14):4958-67. PMID:9538014[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|