2y90: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[ | ==CRYSTAL STRUCTURE OF HFQ RIBOREGULATOR FROM E. COLI (P6 SPACE GROUP)== | ||
<StructureSection load='2y90' size='340' side='right' caption='[[2y90]], [[Resolution|resolution]] 2.25Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2y90]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2Y90 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2Y90 FirstGlance]. <br> | |||
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1m7c|1m7c]], [[1oou|1oou]], [[1hk9|1hk9]], [[1oov|1oov]]</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2y90 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2y90 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2y90 RCSB], [http://www.ebi.ac.uk/pdbsum/2y90 PDBsum]</span></td></tr> | |||
</table> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The Hfq protein was discovered in Escherichia coli in the early seventies as a host factor for the Qbeta phage RNA replication. During the last decade, it was shown to be involved in many RNA processing events and remote sequence homology indicated a link to spliceosomal Sm proteins. We report the crystal structure of the E.coli Hfq protein showing that its monomer displays a characteristic Sm-fold and forms a homo-hexamer, in agreement with former biochemical data. Overall, the structure of the E.coli Hfq ring is similar to the one recently described for Staphylococcus aureus. This confirms that bacteria contain a hexameric Sm-like protein which is likely to be an ancient and less specialized form characterized by a relaxed RNA binding specificity. In addition, we identified an Hfq ortholog in the archaeon Methanococcus jannaschii which lacks a classical Sm/Lsm gene. Finally, a detailed structural comparison shows that the Sm-fold is remarkably well conserved in bacteria, Archaea and Eukarya, and represents a universal and modular building unit for oligomeric RNA binding proteins. | |||
Sm-like proteins in Eubacteria: the crystal structure of the Hfq protein from Escherichia coli.,Sauter C, Basquin J, Suck D Nucleic Acids Res. 2003 Jul 15;31(14):4091-8. PMID:12853626<ref>PMID:12853626</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
== | |||
< | |||
[[Category: Escherichia coli]] | [[Category: Escherichia coli]] | ||
[[Category: Basquin, J.]] | [[Category: Basquin, J.]] |