3a8x: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
[[Image:3a8x.png|left|200px]]
==Crystal Structure of PKCiota kinase domain==
<StructureSection load='3a8x' size='340' side='right' caption='[[3a8x]], [[Resolution|resolution]] 2.00&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[3a8x]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3A8X OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3A8X FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=TPO:PHOSPHOTHREONINE'>TPO</scene></td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3a8w|3a8w]]</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Protein_kinase_C Protein kinase C], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.11.13 2.7.11.13] </span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3a8x FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3a8x OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3a8x RCSB], [http://www.ebi.ac.uk/pdbsum/3a8x PDBsum]</span></td></tr>
</table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/a8/3a8x_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Protein kinase C (PKC) plays an essential role in a wide range of cellular functions. Although crystal structures of the PKC-theta, PKC-iota and PKC-betaII kinase domains have previously been determined in complexes with small-molecule inhibitors, no structure of a PKC-substrate complex has been determined. In the previously determined PKC-iota complex, residues 533-551 in the C-terminal tail were disordered. In the present study, crystal structures of the PKC-iota kinase domain in its ATP-bound and apo forms were determined at 2.1 and 2.0 A resolution, respectively. In the ATP complex, the electron density of all of the C-terminal tail residues was well defined. In the structure, the side chain of Phe543 protrudes into the ATP-binding pocket to make van der Waals interactions with the adenine moiety of ATP; this is also observed in other AGC kinase structures such as binary and ternary substrate complexes of PKA and AKT. In addition to this interaction, the newly defined residues around the turn motif make multiple hydrogen bonds to glycine-rich-loop residues. These interactions reduce the flexibility of the glycine-rich loop, which is organized for ATP binding, and the resulting structure promotes an ATP conformation that is suitable for the subsequent phosphoryl transfer. In the case of the apo form, the structure and interaction mode of the C-terminal tail of PKC-iota are essentially identical to those of the ATP complex. These results indicate that the protein structure is pre-organized before substrate binding to PKC-iota, which is different from the case of the prototypical AGC-branch kinase PKA.


{{STRUCTURE_3a8x|  PDB=3a8x  |  SCENE=  }}
Structures of the PKC-iota kinase domain in its ATP-bound and apo forms reveal defined structures of residues 533-551 in the C-terminal tail and their roles in ATP binding.,Takimura T, Kamata K, Fukasawa K, Ohsawa H, Komatani H, Yoshizumi T, Takahashi I, Kotani H, Iwasawa Y Acta Crystallogr D Biol Crystallogr. 2010 May;66(Pt 5):577-83. Epub 2010 Apr 21. PMID:20445233<ref>PMID:20445233</ref>


===Crystal Structure of PKCiota kinase domain===
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
{{ABSTRACT_PUBMED_20445233}}
== References ==
 
<references/>
==About this Structure==
__TOC__
[[3a8x]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3A8X OCA].
</StructureSection>
 
==See Also==
*[[Protein kinase C|Protein kinase C]]
 
==Reference==
<ref group="xtra">PMID:020445233</ref><references group="xtra"/>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Protein kinase C]]
[[Category: Protein kinase C]]

Revision as of 14:57, 29 October 2014

Crystal Structure of PKCiota kinase domainCrystal Structure of PKCiota kinase domain

Structural highlights

3a8x is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
NonStd Res:
Activity:Protein kinase C, with EC number 2.7.11.13
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Protein kinase C (PKC) plays an essential role in a wide range of cellular functions. Although crystal structures of the PKC-theta, PKC-iota and PKC-betaII kinase domains have previously been determined in complexes with small-molecule inhibitors, no structure of a PKC-substrate complex has been determined. In the previously determined PKC-iota complex, residues 533-551 in the C-terminal tail were disordered. In the present study, crystal structures of the PKC-iota kinase domain in its ATP-bound and apo forms were determined at 2.1 and 2.0 A resolution, respectively. In the ATP complex, the electron density of all of the C-terminal tail residues was well defined. In the structure, the side chain of Phe543 protrudes into the ATP-binding pocket to make van der Waals interactions with the adenine moiety of ATP; this is also observed in other AGC kinase structures such as binary and ternary substrate complexes of PKA and AKT. In addition to this interaction, the newly defined residues around the turn motif make multiple hydrogen bonds to glycine-rich-loop residues. These interactions reduce the flexibility of the glycine-rich loop, which is organized for ATP binding, and the resulting structure promotes an ATP conformation that is suitable for the subsequent phosphoryl transfer. In the case of the apo form, the structure and interaction mode of the C-terminal tail of PKC-iota are essentially identical to those of the ATP complex. These results indicate that the protein structure is pre-organized before substrate binding to PKC-iota, which is different from the case of the prototypical AGC-branch kinase PKA.

Structures of the PKC-iota kinase domain in its ATP-bound and apo forms reveal defined structures of residues 533-551 in the C-terminal tail and their roles in ATP binding.,Takimura T, Kamata K, Fukasawa K, Ohsawa H, Komatani H, Yoshizumi T, Takahashi I, Kotani H, Iwasawa Y Acta Crystallogr D Biol Crystallogr. 2010 May;66(Pt 5):577-83. Epub 2010 Apr 21. PMID:20445233[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Takimura T, Kamata K, Fukasawa K, Ohsawa H, Komatani H, Yoshizumi T, Takahashi I, Kotani H, Iwasawa Y. Structures of the PKC-iota kinase domain in its ATP-bound and apo forms reveal defined structures of residues 533-551 in the C-terminal tail and their roles in ATP binding. Acta Crystallogr D Biol Crystallogr. 2010 May;66(Pt 5):577-83. Epub 2010 Apr 21. PMID:20445233 doi:10.1107/S0907444910005639

3a8x, resolution 2.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA