3glb: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal structure of the effector binding domain of a CATM variant (R156H)== | |||
[[Image: | <StructureSection load='3glb' size='340' side='right' caption='[[3glb]], [[Resolution|resolution]] 2.80Å' scene=''> | ||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[3glb]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Acinetobacter_sp. Acinetobacter sp.]. This structure supersedes the now removed PDB entry [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=2h9q 2h9q]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3GLB OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3GLB FirstGlance]. <br> | |||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CCU:(2Z,4Z)-HEXA-2,4-DIENEDIOIC+ACID'>CCU</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | |||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2h9b|2h9b]], [[2h98|2h98]], [[2f7b|2f7b]], [[2h99|2h99]], [[2f7a|2f7a]], [[2f7c|2f7c]]</td></tr> | |||
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">catM, catR, ACIAD1445 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=472 Acinetobacter sp.])</td></tr> | |||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3glb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3glb OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3glb RCSB], [http://www.ebi.ac.uk/pdbsum/3glb PDBsum]</span></td></tr> | |||
</table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/gl/3glb_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
BenM and CatM control transcription of a complex regulon for aromatic compound degradation. These Acinetobacter baylyi paralogues belong to the largest family of prokaryotic transcriptional regulators, the LysR-type proteins. Whereas BenM activates transcription synergistically in response to two effectors, benzoate and cis,cis-muconate, CatM responds only to cis,cis-muconate. Here, site-directed mutagenesis was used to determine the physiological significance of an unexpected benzoate-binding pocket in BenM discovered during structural studies. Residues in BenM were changed to match those of CatM in this hydrophobic pocket. Two BenM residues, R160 and Y293, were found to mediate the response to benzoate. Additionally, alteration of these residues caused benzoate to inhibit activation by cis,cis-muconate, positioned in a separate primary effector-binding site of BenM. The location of the primary site, in an interdomain cleft, is conserved in diverse LysR-type regulators. To improve understanding of this important family, additional regulatory mutants were analysed. The atomic-level structures were characterized of the effector-binding domains of variants that do not require inducers for activation, CatM(R156H) and BenM(R156H,T157S). These structures clearly resemble those of the wild-type proteins in their activated muconate-bound complexes. Amino acid replacements that enable activation without effectors reside at protein interfaces that may impact transcription through effects on oligomerization. | |||
Inducer responses of BenM, a LysR-type transcriptional regulator from Acinetobacter baylyi ADP1.,Craven SH, Ezezika OC, Haddad S, Hall RA, Momany C, Neidle EL Mol Microbiol. 2009 May;72(4):881-94. Epub 2009 Apr 8. PMID:19400783<ref>PMID:19400783</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
== | |||
< | |||
[[Category: Acinetobacter sp.]] | [[Category: Acinetobacter sp.]] | ||
[[Category: Craven, S H.]] | [[Category: Craven, S H.]] | ||
Line 40: | Line 46: | ||
[[Category: Transcription regulation]] | [[Category: Transcription regulation]] | ||
[[Category: Transcriptional activator]] | [[Category: Transcriptional activator]] | ||
Revision as of 08:37, 10 October 2014
Crystal structure of the effector binding domain of a CATM variant (R156H)Crystal structure of the effector binding domain of a CATM variant (R156H)
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedBenM and CatM control transcription of a complex regulon for aromatic compound degradation. These Acinetobacter baylyi paralogues belong to the largest family of prokaryotic transcriptional regulators, the LysR-type proteins. Whereas BenM activates transcription synergistically in response to two effectors, benzoate and cis,cis-muconate, CatM responds only to cis,cis-muconate. Here, site-directed mutagenesis was used to determine the physiological significance of an unexpected benzoate-binding pocket in BenM discovered during structural studies. Residues in BenM were changed to match those of CatM in this hydrophobic pocket. Two BenM residues, R160 and Y293, were found to mediate the response to benzoate. Additionally, alteration of these residues caused benzoate to inhibit activation by cis,cis-muconate, positioned in a separate primary effector-binding site of BenM. The location of the primary site, in an interdomain cleft, is conserved in diverse LysR-type regulators. To improve understanding of this important family, additional regulatory mutants were analysed. The atomic-level structures were characterized of the effector-binding domains of variants that do not require inducers for activation, CatM(R156H) and BenM(R156H,T157S). These structures clearly resemble those of the wild-type proteins in their activated muconate-bound complexes. Amino acid replacements that enable activation without effectors reside at protein interfaces that may impact transcription through effects on oligomerization. Inducer responses of BenM, a LysR-type transcriptional regulator from Acinetobacter baylyi ADP1.,Craven SH, Ezezika OC, Haddad S, Hall RA, Momany C, Neidle EL Mol Microbiol. 2009 May;72(4):881-94. Epub 2009 Apr 8. PMID:19400783[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|