1w02: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
{{STRUCTURE_1w02|  PDB=1w02  |  SCENE=  }}
==Crystal structure of mutant enzyme Y16F/D103L of ketosteroid isomerase from Pseudomonas putida biotype B==
===Crystal structure of mutant enzyme Y16F/D103L of ketosteroid isomerase from Pseudomonas putida biotype B===
<StructureSection load='1w02' size='340' side='right' caption='[[1w02]], [[Resolution|resolution]] 2.30&Aring;' scene=''>
{{ABSTRACT_PUBMED_15228388}}
== Structural highlights ==
<table><tr><td colspan='2'>[[1w02]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_fluorescens_putidus"_flugge_1886 "bacillus fluorescens putidus" flugge 1886]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1W02 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1W02 FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1c7h|1c7h]], [[1cqs|1cqs]], [[1dmm|1dmm]], [[1dmn|1dmn]], [[1dmq|1dmq]], [[1e3r|1e3r]], [[1e3v|1e3v]], [[1e97|1e97]], [[1ea2|1ea2]], [[1gs3|1gs3]], [[1k41|1k41]], [[1ogx|1ogx]], [[1oh0|1oh0]], [[1oho|1oho]], [[1opy|1opy]], [[1vzz|1vzz]], [[1w00|1w00]], [[1w01|1w01]]</td></tr>
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Steroid_Delta-isomerase Steroid Delta-isomerase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=5.3.3.1 5.3.3.1] </span></td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1w02 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1w02 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1w02 RCSB], [http://www.ebi.ac.uk/pdbsum/1w02 PDBsum]</span></td></tr>
<table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/w0/1w02_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
KSI (ketosteroid isomerase) catalyses an allylic isomerization reaction at a diffusion-controlled rate. A hydrogen bond network, Asp(99).Water(504).Tyr(14).Tyr(55).Tyr(30), connects two critical catalytic residues, Tyr(14) and Asp(99), with Tyr(30), Tyr(55) and a water molecule in the highly apolar active site of the Pseudomonas putida KSI. In order to characterize the interactions among these amino acids in the hydrogen bond network of KSI, double-mutant cycle analysis was performed, and the crystal structure of each mutant protein within the cycle was determined respectively to interpret the coupling energy. The DeltaDeltaG(o) values of Y14F/D99L (Tyr(14)--&gt;Phe/Asp(99)--&gt;Leu) KSI, 25.5 kJ/mol for catalysis and 28.9 kJ/mol for stability, were smaller than the sums (i.e. 29.7 kJ/mol for catalysis and 34.3 kJ/mol for stability) for single mutant KSIs respectively, indicating that the effect of the Y14F/D99L mutation was partially additive for both catalysis and stability. The partially additive effect of the Y14F/D99L mutation suggests that Tyr(14) and Asp(99) should interact positively for the stabilization of the transition state during the catalysis. The crystal structure of Y14F/D99L KSI indicated that the Y14F/D99L mutation increased the hydrophobic interaction while disrupting the hydrogen bond network. The DeltaDeltaG(o) values of both Y30F/D99L and Y55F/D99L KSIs for the catalysis and stability were larger than the sum of single mutants, suggesting that either Tyr(30) and Asp(99) or Tyr(55) and Asp(99) should interact negatively for the catalysis and stability. These synergistic effects of both Y30F/D99L and Y55F/D99L mutations resulted from the disruption of the hydrogen bond network. The synergistic effect of the Y55F/D99L mutation was larger than that of the Y30F/D99L mutation, since the former mutation impaired the proper positioning of a critical catalytic residue, Tyr(14), involved in the catalysis of KSI. The present study can provide insight into interpreting the coupling energy measured by double-mutant cycle analysis based on the crystal structures of the wild-type and mutant proteins.


==About this Structure==
Structural double-mutant cycle analysis of a hydrogen bond network in ketosteroid isomerase from Pseudomonas putida biotype B.,Jang DS, Cha HJ, Cha SS, Hong BH, Ha NC, Lee JY, Oh BH, Lee HS, Choi KY Biochem J. 2004 Sep 15;382(Pt 3):967-73. PMID:15228388<ref>PMID:15228388</ref>
[[1w02]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_fluorescens_putidus"_flugge_1886 "bacillus fluorescens putidus" flugge 1886]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1W02 OCA].
 
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>


==See Also==
==See Also==
*[[Ketosteroid Isomerase|Ketosteroid Isomerase]]
*[[Ketosteroid Isomerase|Ketosteroid Isomerase]]
 
== References ==
==Reference==
<references/>
<ref group="xtra">PMID:015228388</ref><references group="xtra"/><references/>
__TOC__
</StructureSection>
[[Category: Bacillus fluorescens putidus flugge 1886]]
[[Category: Bacillus fluorescens putidus flugge 1886]]
[[Category: Steroid Delta-isomerase]]
[[Category: Steroid Delta-isomerase]]

Revision as of 14:16, 3 October 2014

Crystal structure of mutant enzyme Y16F/D103L of ketosteroid isomerase from Pseudomonas putida biotype BCrystal structure of mutant enzyme Y16F/D103L of ketosteroid isomerase from Pseudomonas putida biotype B

Structural highlights

1w02 is a 1 chain structure with sequence from "bacillus_fluorescens_putidus"_flugge_1886 "bacillus fluorescens putidus" flugge 1886. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Related:1c7h, 1cqs, 1dmm, 1dmn, 1dmq, 1e3r, 1e3v, 1e97, 1ea2, 1gs3, 1k41, 1ogx, 1oh0, 1oho, 1opy, 1vzz, 1w00, 1w01
Activity:Steroid Delta-isomerase, with EC number 5.3.3.1
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

KSI (ketosteroid isomerase) catalyses an allylic isomerization reaction at a diffusion-controlled rate. A hydrogen bond network, Asp(99).Water(504).Tyr(14).Tyr(55).Tyr(30), connects two critical catalytic residues, Tyr(14) and Asp(99), with Tyr(30), Tyr(55) and a water molecule in the highly apolar active site of the Pseudomonas putida KSI. In order to characterize the interactions among these amino acids in the hydrogen bond network of KSI, double-mutant cycle analysis was performed, and the crystal structure of each mutant protein within the cycle was determined respectively to interpret the coupling energy. The DeltaDeltaG(o) values of Y14F/D99L (Tyr(14)-->Phe/Asp(99)-->Leu) KSI, 25.5 kJ/mol for catalysis and 28.9 kJ/mol for stability, were smaller than the sums (i.e. 29.7 kJ/mol for catalysis and 34.3 kJ/mol for stability) for single mutant KSIs respectively, indicating that the effect of the Y14F/D99L mutation was partially additive for both catalysis and stability. The partially additive effect of the Y14F/D99L mutation suggests that Tyr(14) and Asp(99) should interact positively for the stabilization of the transition state during the catalysis. The crystal structure of Y14F/D99L KSI indicated that the Y14F/D99L mutation increased the hydrophobic interaction while disrupting the hydrogen bond network. The DeltaDeltaG(o) values of both Y30F/D99L and Y55F/D99L KSIs for the catalysis and stability were larger than the sum of single mutants, suggesting that either Tyr(30) and Asp(99) or Tyr(55) and Asp(99) should interact negatively for the catalysis and stability. These synergistic effects of both Y30F/D99L and Y55F/D99L mutations resulted from the disruption of the hydrogen bond network. The synergistic effect of the Y55F/D99L mutation was larger than that of the Y30F/D99L mutation, since the former mutation impaired the proper positioning of a critical catalytic residue, Tyr(14), involved in the catalysis of KSI. The present study can provide insight into interpreting the coupling energy measured by double-mutant cycle analysis based on the crystal structures of the wild-type and mutant proteins.

Structural double-mutant cycle analysis of a hydrogen bond network in ketosteroid isomerase from Pseudomonas putida biotype B.,Jang DS, Cha HJ, Cha SS, Hong BH, Ha NC, Lee JY, Oh BH, Lee HS, Choi KY Biochem J. 2004 Sep 15;382(Pt 3):967-73. PMID:15228388[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Jang DS, Cha HJ, Cha SS, Hong BH, Ha NC, Lee JY, Oh BH, Lee HS, Choi KY. Structural double-mutant cycle analysis of a hydrogen bond network in ketosteroid isomerase from Pseudomonas putida biotype B. Biochem J. 2004 Sep 15;382(Pt 3):967-73. PMID:15228388 doi:http://dx.doi.org/10.1042/BJ20031871

1w02, resolution 2.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA