1sx3: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
{{STRUCTURE_1sx3| PDB=1sx3 | SCENE= }}
==GroEL14-(ATPgammaS)14==
===GroEL14-(ATPgammaS)14===
<StructureSection load='1sx3' size='340' side='right' caption='[[1sx3]], [[Resolution|resolution]] 2.00&Aring;' scene=''>
{{ABSTRACT_PUBMED_12654267}}
== Structural highlights ==
<table><tr><td colspan='2'>[[1sx3]] is a 14 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1SX3 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1SX3 FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=AGS:PHOSPHOTHIOPHOSPHORIC+ACID-ADENYLATE+ESTER'>AGS</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene><br>
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1kp8|1kp8]]</td></tr>
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GROL, GROEL, MOPA, B4143, C5227, Z5748, ECS5124, SF4297, S4564 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895])</td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1sx3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1sx3 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1sx3 RCSB], [http://www.ebi.ac.uk/pdbsum/1sx3 PDBsum]</span></td></tr>
<table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/sx/1sx3_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Nucleotide regulates the affinity of the bacterial chaperonin GroEL for protein substrates. GroEL binds protein substrates with high affinity in the absence of ATP and with low affinity in its presence. We report the crystal structure of (GroEL-KMgATP)(14) refined to 2.0 A resolution in which the ATP triphosphate moiety is directly coordinated by both K(+) and Mg(2+). Upon the binding of KMgATP, we observe previously unnoticed domain rotations and a 102 degrees rotation of the apical domain surface helix I. Two major consequences are a large lateral displacement of, and a dramatic reduction of hydrophobicity in, the apical domain surface. These results provide a basis for the nucleotide-dependent regulation of protein substrate binding and suggest a mechanism for GroEL-assisted protein folding by forced unfolding.


==Function==
Structural basis for GroEL-assisted protein folding from the crystal structure of (GroEL-KMgATP)14 at 2.0A resolution.,Wang J, Boisvert DC J Mol Biol. 2003 Apr 4;327(4):843-55. PMID:12654267<ref>PMID:12654267</ref>
[[http://www.uniprot.org/uniprot/CH60_ECOLI CH60_ECOLI]] Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions.[HAMAP-Rule:MF_00600]  Essential for the growth of the bacteria and the assembly of several bacteriophages. Also plays a role in coupling between replication of the F plasmid and cell division of the cell.[HAMAP-Rule:MF_00600]


==About this Structure==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
[[1sx3]] is a 14 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1SX3 OCA].
</div>


==See Also==
==See Also==
*[[Chaperonin|Chaperonin]]
*[[Chaperonin|Chaperonin]]
 
== References ==
==Reference==
<references/>
<ref group="xtra">PMID:012654267</ref><references group="xtra"/><references/>
__TOC__
</StructureSection>
[[Category: Bacillus coli migula 1895]]
[[Category: Bacillus coli migula 1895]]
[[Category: Adams, P D.]]
[[Category: Adams, P D.]]

Revision as of 13:35, 3 October 2014

GroEL14-(ATPgammaS)14GroEL14-(ATPgammaS)14

Structural highlights

1sx3 is a 14 chain structure with sequence from "bacillus_coli"_migula_1895 "bacillus coli" migula 1895. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, ,
Related:1kp8
Gene:GROL, GROEL, MOPA, B4143, C5227, Z5748, ECS5124, SF4297, S4564 ("Bacillus coli" Migula 1895)
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Nucleotide regulates the affinity of the bacterial chaperonin GroEL for protein substrates. GroEL binds protein substrates with high affinity in the absence of ATP and with low affinity in its presence. We report the crystal structure of (GroEL-KMgATP)(14) refined to 2.0 A resolution in which the ATP triphosphate moiety is directly coordinated by both K(+) and Mg(2+). Upon the binding of KMgATP, we observe previously unnoticed domain rotations and a 102 degrees rotation of the apical domain surface helix I. Two major consequences are a large lateral displacement of, and a dramatic reduction of hydrophobicity in, the apical domain surface. These results provide a basis for the nucleotide-dependent regulation of protein substrate binding and suggest a mechanism for GroEL-assisted protein folding by forced unfolding.

Structural basis for GroEL-assisted protein folding from the crystal structure of (GroEL-KMgATP)14 at 2.0A resolution.,Wang J, Boisvert DC J Mol Biol. 2003 Apr 4;327(4):843-55. PMID:12654267[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Wang J, Boisvert DC. Structural basis for GroEL-assisted protein folding from the crystal structure of (GroEL-KMgATP)14 at 2.0A resolution. J Mol Biol. 2003 Apr 4;327(4):843-55. PMID:12654267

1sx3, resolution 2.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA