1a37: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==14-3-3 PROTEIN ZETA BOUND TO PS-RAF259 PEPTIDE== | |||
<StructureSection load='1a37' size='340' side='right' caption='[[1a37]], [[Resolution|resolution]] 3.60Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1a37]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Bos_taurus Bos taurus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1A37 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1A37 FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=PSE:O-PHOSPHOETHANOLAMINE'>PSE</scene></td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1a37 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1a37 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1a37 RCSB], [http://www.ebi.ac.uk/pdbsum/1a37 PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/a3/1a37_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
14-3-3 proteins bind a variety of molecules involved in signal transduction, cell cycle regulation and apoptosis. 14-3-3 binds ligands such as Raf-1 kinase and Bad by recognizing the phosphorylated consensus motif, RSXpSXP, but must bind unphosphorylated ligands, such as glycoprotein Ib and Pseudomonas aeruginosa exoenzyme S, via a different motif. Here we report the crystal structures of the zeta isoform of 14-3-3 in complex with two peptide ligands: a Raf-derived phosphopeptide (pS-Raf-259, LSQRQRSTpSTPNVHMV) and an unphosphorylated peptide derived from phage display (R18, PHCVPRDLSWLDLEANMCLP) that inhibits binding of exoenzyme S and Raf-1. The two peptides bind within a conserved amphipathic groove on the surface of 14-3-3 at overlapping but distinct sites. The phosphoserine of pS-Raf-259 engages a cluster of basic residues (Lys49, Arg56, Arg60, and Arg127), whereas R18 binds via the amphipathic sequence, WLDLE, with its two acidic groups coordinating the same basic cluster. 14-3-3 is dimeric, and its two peptide-binding grooves are arranged in an antiparallel fashion, 30 A apart. The ability of each groove to bind different peptide motifs suggests how 14-3-3 can act in signal transduction by inducing either homodimer or heterodimer formation in its target proteins. | |||
14-3-3zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove.,Petosa C, Masters SC, Bankston LA, Pohl J, Wang B, Fu H, Liddington RC J Biol Chem. 1998 Jun 26;273(26):16305-10. PMID:9632691<ref>PMID:9632691</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
== | ==See Also== | ||
*[[14-3-3 protein|14-3-3 protein]] | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
[[Category: Bos taurus]] | [[Category: Bos taurus]] | ||
[[Category: Fu, H.]] | [[Category: Fu, H.]] |
Revision as of 11:53, 3 October 2014
14-3-3 PROTEIN ZETA BOUND TO PS-RAF259 PEPTIDE14-3-3 PROTEIN ZETA BOUND TO PS-RAF259 PEPTIDE
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMed14-3-3 proteins bind a variety of molecules involved in signal transduction, cell cycle regulation and apoptosis. 14-3-3 binds ligands such as Raf-1 kinase and Bad by recognizing the phosphorylated consensus motif, RSXpSXP, but must bind unphosphorylated ligands, such as glycoprotein Ib and Pseudomonas aeruginosa exoenzyme S, via a different motif. Here we report the crystal structures of the zeta isoform of 14-3-3 in complex with two peptide ligands: a Raf-derived phosphopeptide (pS-Raf-259, LSQRQRSTpSTPNVHMV) and an unphosphorylated peptide derived from phage display (R18, PHCVPRDLSWLDLEANMCLP) that inhibits binding of exoenzyme S and Raf-1. The two peptides bind within a conserved amphipathic groove on the surface of 14-3-3 at overlapping but distinct sites. The phosphoserine of pS-Raf-259 engages a cluster of basic residues (Lys49, Arg56, Arg60, and Arg127), whereas R18 binds via the amphipathic sequence, WLDLE, with its two acidic groups coordinating the same basic cluster. 14-3-3 is dimeric, and its two peptide-binding grooves are arranged in an antiparallel fashion, 30 A apart. The ability of each groove to bind different peptide motifs suggests how 14-3-3 can act in signal transduction by inducing either homodimer or heterodimer formation in its target proteins. 14-3-3zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove.,Petosa C, Masters SC, Bankston LA, Pohl J, Wang B, Fu H, Liddington RC J Biol Chem. 1998 Jun 26;273(26):16305-10. PMID:9632691[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|