2uxb: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal structure of an extended tRNA anticodon stem loop in complex with its cognate mRNA GGGU in the context of the Thermus thermophilus 30S subunit.== | |||
<StructureSection load='2uxb' size='340' side='right' caption='[[2uxb]], [[Resolution|resolution]] 3.10Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2uxb]] is a 23 chain structure with sequence from [http://en.wikipedia.org/wiki/Thermus_thermophilus Thermus thermophilus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2UXB OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2UXB FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=PAR:PAROMOMYCIN'>PAR</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene><br> | |||
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1fjg|1fjg]], [[1gix|1gix]], [[1i94|1i94]], [[1i95|1i95]], [[1i96|1i96]], [[1i97|1i97]], [[1ibk|1ibk]], [[1ibl|1ibl]], [[1ibm|1ibm]], [[1j5e|1j5e]], [[1jgo|1jgo]], [[1jgp|1jgp]], [[1jgq|1jgq]], [[1l1u|1l1u]], [[1n32|1n32]], [[1n33|1n33]], [[1n34|1n34]], [[1n36|1n36]], [[1pns|1pns]], [[1pnx|1pnx]], [[1xmo|1xmo]], [[1xmq|1xmq]], [[1xnq|1xnq]], [[1xnr|1xnr]], [[1yl4|1yl4]], [[2b64|2b64]], [[2b9m|2b9m]], [[2b9o|2b9o]], [[2f4v|2f4v]], [[2j00|2j00]], [[2j02|2j02]], [[2uu9|2uu9]], [[2uua|2uua]], [[2uub|2uub]], [[2uuc|2uuc]], [[2uxc|2uxc]], [[2uxd|2uxd]]</td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2uxb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2uxb OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2uxb RCSB], [http://www.ebi.ac.uk/pdbsum/2uxb PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ux/2uxb_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
During translation, some +1 frameshift mRNA sites are decoded by frameshift suppressor tRNAs that contain an extra base in their anticodon loops. Similarly engineered tRNAs have been used to insert nonnatural amino acids into proteins. Here, we report crystal structures of two anticodon stem-loops (ASLs) from tRNAs known to facilitate +1 frameshifting bound to the 30S ribosomal subunit with their cognate mRNAs. ASL(CCCG) and ASL(ACCC) (5'-3' nomenclature) form unpredicted anticodon-codon interactions where the anticodon base 34 at the wobble position contacts either the fourth codon base or the third and fourth codon bases. In addition, we report the structure of ASL(ACGA) bound to the 30S ribosomal subunit with its cognate mRNA. The tRNA containing this ASL was previously shown to be unable to facilitate +1 frameshifting in competition with normal tRNAs (Hohsaka et al. 2001), and interestingly, it displays a normal anticodon-codon interaction. These structures show that the expanded anticodon loop of +1 frameshift promoting tRNAs are flexible enough to adopt conformations that allow three bases of the anticodon to span four bases of the mRNA. Therefore it appears that normal triplet pairing is not an absolute constraint of the decoding center. | |||
Structures of tRNAs with an expanded anticodon loop in the decoding center of the 30S ribosomal subunit.,Dunham CM, Selmer M, Phelps SS, Kelley AC, Suzuki T, Joseph S, Ramakrishnan V RNA. 2007 Jun;13(6):817-23. Epub 2007 Apr 6. PMID:17416634<ref>PMID:17416634</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | ==See Also== | ||
*[[Ribosomal protein THX|Ribosomal protein THX]] | *[[Ribosomal protein THX|Ribosomal protein THX]] | ||
*[[Ribosome|Ribosome]] | *[[Ribosome 3D structures|Ribosome 3D structures]] | ||
== References == | |||
== | <references/> | ||
__TOC__ | |||
</StructureSection> | |||
[[Category: Thermus thermophilus]] | [[Category: Thermus thermophilus]] | ||
[[Category: Dunham, C M.]] | [[Category: Dunham, C M.]] |
Revision as of 08:18, 3 October 2014
Crystal structure of an extended tRNA anticodon stem loop in complex with its cognate mRNA GGGU in the context of the Thermus thermophilus 30S subunit.Crystal structure of an extended tRNA anticodon stem loop in complex with its cognate mRNA GGGU in the context of the Thermus thermophilus 30S subunit.
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedDuring translation, some +1 frameshift mRNA sites are decoded by frameshift suppressor tRNAs that contain an extra base in their anticodon loops. Similarly engineered tRNAs have been used to insert nonnatural amino acids into proteins. Here, we report crystal structures of two anticodon stem-loops (ASLs) from tRNAs known to facilitate +1 frameshifting bound to the 30S ribosomal subunit with their cognate mRNAs. ASL(CCCG) and ASL(ACCC) (5'-3' nomenclature) form unpredicted anticodon-codon interactions where the anticodon base 34 at the wobble position contacts either the fourth codon base or the third and fourth codon bases. In addition, we report the structure of ASL(ACGA) bound to the 30S ribosomal subunit with its cognate mRNA. The tRNA containing this ASL was previously shown to be unable to facilitate +1 frameshifting in competition with normal tRNAs (Hohsaka et al. 2001), and interestingly, it displays a normal anticodon-codon interaction. These structures show that the expanded anticodon loop of +1 frameshift promoting tRNAs are flexible enough to adopt conformations that allow three bases of the anticodon to span four bases of the mRNA. Therefore it appears that normal triplet pairing is not an absolute constraint of the decoding center. Structures of tRNAs with an expanded anticodon loop in the decoding center of the 30S ribosomal subunit.,Dunham CM, Selmer M, Phelps SS, Kelley AC, Suzuki T, Joseph S, Ramakrishnan V RNA. 2007 Jun;13(6):817-23. Epub 2007 Apr 6. PMID:17416634[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|
Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)
OCA- Thermus thermophilus
- Dunham, C M.
- Joseph, S.
- Kelley, A C.
- Phelps, S S.
- Ramakrishnan, V.
- Selmer, M.
- Suzuki, T.
- 30s ribosomal subunit
- A site
- Anticodon
- Codon
- Decoding
- Frameshift
- Frameshift suppressor trna
- Messenger rna
- Metal-binding
- Mrna
- Paromomycin
- Ribonucleoprotein
- Ribosomal protein
- Ribosome
- Rna-binding
- Rrna-binding
- Stem-loop
- Transfer rna
- Trna
- Trna-binding
- Zinc-finger