2yfp: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
[[Image:2yfp.png|left|200px]]
==STRUCTURE OF YELLOW-EMISSION VARIANT OF GFP==
<StructureSection load='2yfp' size='340' side='right' caption='[[2yfp]], [[Resolution|resolution]] 2.60&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[2yfp]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Aequorea_victoria Aequorea victoria]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2YFP OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2YFP FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CR2:{(4Z)-2-(AMINOMETHYL)-4-[(4-HYDROXYPHENYL)METHYLIDENE]-5-OXO-4,5-DIHYDRO-1H-IMIDAZOL-1-YL}ACETIC+ACID'>CR2</scene></td></tr>
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GFP ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=6100 Aequorea victoria])</td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2yfp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2yfp OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2yfp RCSB], [http://www.ebi.ac.uk/pdbsum/2yfp PDBsum]</span></td></tr>
<table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/yf/2yfp_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
BACKGROUND: Because of its ability to spontaneously generate its own fluorophore, the green fluorescent protein (GFP) from the jellyfish Aequorea victoria is used extensively as a fluorescent marker in molecular and cell biology. The yellow fluorescent proteins (YFPs) have the longest wavelength emissions of all GFP variants examined to date. This shift in the spectrum is the result of a T203Y substitution (single-letter amino acid code), a mutation rationally designed on the basis of the X-ray structure of GFP S65T. RESULTS: We have determined the crystal structures of YFP T203Y/S65G/V68L/S72A and YFP H148G to 2.5 and 2.6 A resolution, respectively. Both structures show clear electron density for nearly coplanar pi-pi stacking between Tyr203 and the chromophore. The chromophore has been displaced by nearly 1 A in comparison to other available structures. Although the H148G mutation results in the generation of a solvent channel to the chromophore cavity, intense fluorescence is maintained. The chromophore in the intact protein can be titrated, and the two variants have pKa values of 7.0 (YFP) and 8.0 (YFP H148G). CONCLUSIONS: The observed red shift of the T203Y YFP variant is proposed to be mainly due to the additional polarizability of the pi-stacked Tyr203. The altered location of the chromophore suggests that the exact positions of nearby residues are not crucial for the chemistry of chromophore formation. The YFPs significantly extend the pH range over which GFPs may be employed as pH indicators in live cells.


{{STRUCTURE_2yfp|  PDB=2yfp  |  SCENE=  }}
Structural basis of spectral shifts in the yellow-emission variants of green fluorescent protein.,Wachter RM, Elsliger MA, Kallio K, Hanson GT, Remington SJ Structure. 1998 Oct 15;6(10):1267-77. PMID:9782051<ref>PMID:9782051</ref>


===STRUCTURE OF YELLOW-EMISSION VARIANT OF GFP===
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
{{ABSTRACT_PUBMED_9782051}}
 
==About this Structure==
[[2yfp]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Aequorea_victoria Aequorea victoria]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2YFP OCA].


==See Also==
==See Also==
*[[Alyssa Marsico/Sandbox 1|Alyssa Marsico/Sandbox 1]]
*[[Devon McCarthy/Sandbox 1|Devon McCarthy/Sandbox 1]]
*[[Green Fluorescent Protein|Green Fluorescent Protein]]
*[[Green Fluorescent Protein|Green Fluorescent Protein]]
*[[Sandbox104|Sandbox104]]
== References ==
*[[User:Joanne Lau/Sandbox 5|User:Joanne Lau/Sandbox 5]]
<references/>
 
__TOC__
==Reference==
</StructureSection>
<ref group="xtra">PMID:009782051</ref><references group="xtra"/>
[[Category: Aequorea victoria]]
[[Category: Aequorea victoria]]
[[Category: Elsliger, M A.]]
[[Category: Elsliger, M A.]]

Revision as of 08:11, 3 October 2014

STRUCTURE OF YELLOW-EMISSION VARIANT OF GFPSTRUCTURE OF YELLOW-EMISSION VARIANT OF GFP

Structural highlights

2yfp is a 1 chain structure with sequence from Aequorea victoria. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
NonStd Res:
Gene:GFP (Aequorea victoria)
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

BACKGROUND: Because of its ability to spontaneously generate its own fluorophore, the green fluorescent protein (GFP) from the jellyfish Aequorea victoria is used extensively as a fluorescent marker in molecular and cell biology. The yellow fluorescent proteins (YFPs) have the longest wavelength emissions of all GFP variants examined to date. This shift in the spectrum is the result of a T203Y substitution (single-letter amino acid code), a mutation rationally designed on the basis of the X-ray structure of GFP S65T. RESULTS: We have determined the crystal structures of YFP T203Y/S65G/V68L/S72A and YFP H148G to 2.5 and 2.6 A resolution, respectively. Both structures show clear electron density for nearly coplanar pi-pi stacking between Tyr203 and the chromophore. The chromophore has been displaced by nearly 1 A in comparison to other available structures. Although the H148G mutation results in the generation of a solvent channel to the chromophore cavity, intense fluorescence is maintained. The chromophore in the intact protein can be titrated, and the two variants have pKa values of 7.0 (YFP) and 8.0 (YFP H148G). CONCLUSIONS: The observed red shift of the T203Y YFP variant is proposed to be mainly due to the additional polarizability of the pi-stacked Tyr203. The altered location of the chromophore suggests that the exact positions of nearby residues are not crucial for the chemistry of chromophore formation. The YFPs significantly extend the pH range over which GFPs may be employed as pH indicators in live cells.

Structural basis of spectral shifts in the yellow-emission variants of green fluorescent protein.,Wachter RM, Elsliger MA, Kallio K, Hanson GT, Remington SJ Structure. 1998 Oct 15;6(10):1267-77. PMID:9782051[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Wachter RM, Elsliger MA, Kallio K, Hanson GT, Remington SJ. Structural basis of spectral shifts in the yellow-emission variants of green fluorescent protein. Structure. 1998 Oct 15;6(10):1267-77. PMID:9782051

2yfp, resolution 2.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA