2ok6: Difference between revisions

m Protected "2ok6" [edit=sysop:move=sysop]
No edit summary
Line 1: Line 1:
[[Image:2ok6.png|left|200px]]
==Crystal structure of aromatic amine dehydrogenase TTQ-formamide adduct oxidized with ferricyanide.==
<StructureSection load='2ok6' size='340' side='right' caption='[[2ok6]], [[Resolution|resolution]] 1.45&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[2ok6]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Alcaligenes_faecalis Alcaligenes faecalis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2OK6 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2OK6 FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BEZ:BENZOIC+ACID'>BEZ</scene><br>
<tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=1TQ:6-(FORMYLAMINO)-7-HYDROXY-L-TRYPTOPHAN'>1TQ</scene>, <scene name='pdbligand=TQQ:(S)-2-AMINO-3-(6,7-DIHYDRO-6-IMINO-7-OXO-1H-INDOL-3-YL)PROPANOIC+ACID'>TQQ</scene></td></tr>
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2i0r|2i0r]]</td></tr>
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Aralkylamine_dehydrogenase Aralkylamine dehydrogenase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.4.99.4 1.4.99.4] </span></td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2ok6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2ok6 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2ok6 RCSB], [http://www.ebi.ac.uk/pdbsum/2ok6 PDBsum]</span></td></tr>
<table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ok/2ok6_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Aromatic amine dehydrogenase uses a tryptophan tryptophylquinone (TTQ) cofactor to oxidatively deaminate primary aromatic amines. In the reductive half-reaction, a proton is transferred from the substrate C1 to betaAsp-128 O-2, in a reaction that proceeds by H-tunneling. Using solution studies, kinetic crystallography, and computational simulation we show that the mechanism of oxidation of aromatic carbinolamines is similar to amine oxidation, but that carbinolamine oxidation occurs at a substantially reduced rate. This has enabled us to determine for the first time the structure of the intermediate prior to the H-transfer/reduction step. The proton-betaAsp-128 O-2 distance is approximately 3.7A, in contrast to the distance of approximately 2.7A predicted for the intermediate formed with the corresponding primary amine substrate. This difference of approximately 1.0 A is due to an unexpected conformation of the substrate moiety, which is supported by molecular dynamic simulations and reflected in the approximately 10(7)-fold slower TTQ reduction rate with phenylaminoethanol compared with that with primary amines. A water molecule is observed near TTQ C-6 and is likely derived from the collapse of the preceding carbinolamine TTQ-adduct. We suggest this water molecule is involved in consecutive proton transfers following TTQ reduction, and is ultimately repositioned near the TTQ O-7 concomitant with protein rearrangement. For all carbinolamines tested, highly stable amide-TTQ adducts are formed following proton abstraction and TTQ reduction. Slow hydrolysis of the amide occurs after, rather than prior to, TTQ oxidation and leads ultimately to a carboxylic acid product.


{{STRUCTURE_2ok6|  PDB=2ok6  |  SCENE=  }}
New insights into the reductive half-reaction mechanism of aromatic amine dehydrogenase revealed by reaction with carbinolamine substrates.,Roujeinikova A, Hothi P, Masgrau L, Sutcliffe MJ, Scrutton NS, Leys D J Biol Chem. 2007 Aug 17;282(33):23766-77. Epub 2007 May 1. PMID:17475620<ref>PMID:17475620</ref>


===Crystal structure of aromatic amine dehydrogenase TTQ-formamide adduct oxidized with ferricyanide.===
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>


{{ABSTRACT_PUBMED_17475620}}
==See Also==
 
*[[Aromatic amine dehydrogenase|Aromatic amine dehydrogenase]]
==About this Structure==
== References ==
[[2ok6]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Alcaligenes_faecalis Alcaligenes faecalis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2OK6 OCA].
<references/>
 
__TOC__
==Reference==
</StructureSection>
<ref group="xtra">PMID:017475620</ref><references group="xtra"/>
[[Category: Alcaligenes faecalis]]
[[Category: Alcaligenes faecalis]]
[[Category: Aralkylamine dehydrogenase]]
[[Category: Aralkylamine dehydrogenase]]

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA