2jdr: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
{{STRUCTURE_2jdr|  PDB=2jdr  |  SCENE=  }}
==STRUCTURE OF PKB-BETA (AKT2) COMPLEXED WITH THE INHIBITOR A-443654==
===STRUCTURE OF PKB-BETA (AKT2) COMPLEXED WITH THE INHIBITOR A-443654===
<StructureSection load='2jdr' size='340' side='right' caption='[[2jdr]], [[Resolution|resolution]] 2.30&Aring;' scene=''>
{{ABSTRACT_PUBMED_17275837}}
== Structural highlights ==
<table><tr><td colspan='2'>[[2jdr]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2JDR OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2JDR FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=L20:(2S)-1-(1H-INDOL-3-YL)-3-{[5-(3-METHYL-1H-INDAZOL-5-YL)PYRIDIN-3-YL]OXY}PROPAN-2-AMINE'>L20</scene><br>
<tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=TPO:PHOSPHOTHREONINE'>TPO</scene></td></tr>
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1gzk|1gzk]], [[1gzn|1gzn]], [[1gzo|1gzo]], [[1mrv|1mrv]], [[1mry|1mry]], [[1o6k|1o6k]], [[1o6l|1o6l]], [[1p6s|1p6s]], [[2jdo|2jdo]]</td></tr>
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Non-specific_serine/threonine_protein_kinase Non-specific serine/threonine protein kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.11.1 2.7.11.1] </span></td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2jdr FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2jdr OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2jdr RCSB], [http://www.ebi.ac.uk/pdbsum/2jdr PDBsum]</span></td></tr>
<table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/jd/2jdr_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Although the crystal structure of the anti-cancer target protein kinase B (PKBbeta/Akt-2) has been useful in guiding inhibitor design, the closely related kinase PKA has generally been used as a structural mimic due to its facile crystallization with a range of ligands. The use of PKB-inhibitor crystallography would bring important benefits, including a more rigorous understanding of factors dictating PKA/PKB selectivity, and the opportunity to validate the utility of PKA-based surrogates. We present a "back-soaking" method for obtaining PKBbeta-ligand crystal structures, and provide a structural comparison of inhibitor binding to PKB, PKA, and PKA-PKB chimera. One inhibitor presented here exhibits no PKB/PKA selectivity, and the compound adopts a similar binding mode in all three systems. By contrast, the PKB-selective inhibitor A-443654 adopts a conformation in PKB and PKA-PKB that differs from that with PKA. We provide a structural explanation for this difference, and highlight the ability of PKA-PKB to mimic the true PKB binding mode in this case.


==Function==
A structural comparison of inhibitor binding to PKB, PKA and PKA-PKB chimera.,Davies TG, Verdonk ML, Graham B, Saalau-Bethell S, Hamlett CC, McHardy T, Collins I, Garrett MD, Workman P, Woodhead SJ, Jhoti H, Barford D J Mol Biol. 2007 Mar 30;367(3):882-94. Epub 2007 Jan 9. PMID:17275837<ref>PMID:17275837</ref>
[[http://www.uniprot.org/uniprot/GSK3B_HUMAN GSK3B_HUMAN]] Constitutively active protein kinase that acts as a negative regulator in the hormonal control of glucose homeostasis, Wnt signaling and regulation of transcription factors and microtubules, by phosphorylating and inactivating glycogen synthase (GYS1 or GYS2), EIF2B, CTNNB1/beta-catenin, APC, AXIN1, DPYSL2/CRMP2, JUN, NFATC1/NFATC, MAPT/TAU and MACF1. Requires primed phosphorylation of the majority of its substrates. In skeletal muscle, contributes to insulin regulation of glycogen synthesis by phosphorylating and inhibiting GYS1 activity and hence glycogen synthesis. May also mediate the development of insulin resistance by regulating activation of transcription factors. Regulates protein synthesis by controlling the activity of initiation factor 2B (EIF2BE/EIF2B5) in the same manner as glycogen synthase. In Wnt signaling, GSK3B forms a multimeric complex with APC, AXIN1 and CTNNB1/beta-catenin and phosphorylates the N-terminus of CTNNB1 leading to its degradation mediated by ubiquitin/proteasomes. Phosphorylates JUN at sites proximal to its DNA-binding domain, thereby reducing its affinity for DNA. Phosphorylates NFATC1/NFATC on conserved serine residues promoting NFATC1/NFATC nuclear export, shutting off NFATC1/NFATC gene regulation, and thereby opposing the action of calcineurin. Phosphorylates MAPT/TAU on 'Thr-548', decreasing significantly MAPT/TAU ability to bind and stabilize microtubules. MAPT/TAU is the principal component of neurofibrillary tangles in Alzheimer disease. Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex. Phosphorylates MACF1, inhibiting its binding to microtubules which is critical for its role in bulge stem cell migration and skin wound repair. Probably regulates NF-kappa-B (NFKB1) at the transcriptional level and is required for the NF-kappa-B-mediated anti-apoptotic response to TNF-alpha (TNF/TNFA). Negatively regulates replication in pancreatic beta-cells, resulting in apoptosis, loss of beta-cells and diabetes. Phosphorylates MUC1 in breast cancer cells, decreasing the interaction of MUC1 with CTNNB1/beta-catenin. Is necessary for the establishment of neuronal polarity and axon outgrowth. Phosphorylates MARK2, leading to inhibit its activity. Phosphorylates SIK1 at 'Thr-182', leading to sustain its activity. Phosphorylates ZC3HAV1 which enhances its antiviral activity. Phosphorylates SFPQ at 'Thr-687' upon T-cell activation.<ref>PMID:1846781</ref><ref>PMID:8397507</ref><ref>PMID:9072970</ref><ref>PMID:9819408</ref><ref>PMID:11430833</ref><ref>PMID:14690523</ref><ref>PMID:15448698</ref><ref>PMID:18348280</ref><ref>PMID:20932480</ref><ref>PMID:20937854</ref><ref>PMID:22514281</ref><ref>PMID:12554650</ref>  


==About this Structure==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
[[2jdr]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2JDR OCA].
</div>


==Reference==
==See Also==
<ref group="xtra">PMID:017275837</ref><references group="xtra"/><references/>
*[[Serine/threonine protein kinase|Serine/threonine protein kinase]]
== References ==
<references/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Non-specific serine/threonine protein kinase]]
[[Category: Non-specific serine/threonine protein kinase]]

Revision as of 13:08, 30 September 2014

STRUCTURE OF PKB-BETA (AKT2) COMPLEXED WITH THE INHIBITOR A-443654STRUCTURE OF PKB-BETA (AKT2) COMPLEXED WITH THE INHIBITOR A-443654

Structural highlights

2jdr is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
NonStd Res:
Related:1gzk, 1gzn, 1gzo, 1mrv, 1mry, 1o6k, 1o6l, 1p6s, 2jdo
Activity:Non-specific serine/threonine protein kinase, with EC number 2.7.11.1
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Although the crystal structure of the anti-cancer target protein kinase B (PKBbeta/Akt-2) has been useful in guiding inhibitor design, the closely related kinase PKA has generally been used as a structural mimic due to its facile crystallization with a range of ligands. The use of PKB-inhibitor crystallography would bring important benefits, including a more rigorous understanding of factors dictating PKA/PKB selectivity, and the opportunity to validate the utility of PKA-based surrogates. We present a "back-soaking" method for obtaining PKBbeta-ligand crystal structures, and provide a structural comparison of inhibitor binding to PKB, PKA, and PKA-PKB chimera. One inhibitor presented here exhibits no PKB/PKA selectivity, and the compound adopts a similar binding mode in all three systems. By contrast, the PKB-selective inhibitor A-443654 adopts a conformation in PKB and PKA-PKB that differs from that with PKA. We provide a structural explanation for this difference, and highlight the ability of PKA-PKB to mimic the true PKB binding mode in this case.

A structural comparison of inhibitor binding to PKB, PKA and PKA-PKB chimera.,Davies TG, Verdonk ML, Graham B, Saalau-Bethell S, Hamlett CC, McHardy T, Collins I, Garrett MD, Workman P, Woodhead SJ, Jhoti H, Barford D J Mol Biol. 2007 Mar 30;367(3):882-94. Epub 2007 Jan 9. PMID:17275837[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Davies TG, Verdonk ML, Graham B, Saalau-Bethell S, Hamlett CC, McHardy T, Collins I, Garrett MD, Workman P, Woodhead SJ, Jhoti H, Barford D. A structural comparison of inhibitor binding to PKB, PKA and PKA-PKB chimera. J Mol Biol. 2007 Mar 30;367(3):882-94. Epub 2007 Jan 9. PMID:17275837 doi:http://dx.doi.org/10.1016/j.jmb.2007.01.004

2jdr, resolution 2.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA