2hwx: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
m Protected "2hwx" [edit=sysop:move=sysop]
No edit summary
Line 1: Line 1:
[[Image:2hwx.png|left|200px]]
==Structure of human SMG6 E1282C PIN domain mutant.==
<StructureSection load='2hwx' size='340' side='right' caption='[[2hwx]], [[Resolution|resolution]] 1.90&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[2hwx]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2HWX OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2HWX FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2hww|2hww]]</td></tr>
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">EST1A ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])</td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2hwx FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2hwx OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2hwx RCSB], [http://www.ebi.ac.uk/pdbsum/2hwx PDBsum]</span></td></tr>
<table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/hw/2hwx_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
SMG6 and SMG5 are essential factors in nonsense-mediated mRNA decay, a conserved pathway that degrades mRNAs with premature translation termination codons. Both SMG5 and SMG6 have been predicted to contain a C-terminal PIN (PilT N-terminus) domain, present in proteins with ribonuclease activity. We have determined the structures of human SMG5 and SMG6 PIN domains. Although they share a similar overall fold related to ribonucleases of the RNase H family, they have local differences at the putative active site. SMG6 has the canonical triad of acidic residues that are crucial in RNase H for nuclease activity, while SMG5 lacks key catalytic residues. The structural differences are reflected at the functional level. Only the PIN domain of SMG6 has degradation activity on single-stranded RNA in vitro. This difference in catalytic activity is conserved in Drosophila, where an SMG6 with an inactive PIN domain inhibits NMD in a dominant-negative manner. Our findings suggest that the NMD machinery has intrinsic nuclease activity that is likely to contribute to the rapid decay of mRNAs that terminate translation prematurely.


{{STRUCTURE_2hwx|  PDB=2hwx  |  SCENE=  }}
Structures of the PIN domains of SMG6 and SMG5 reveal a nuclease within the mRNA surveillance complex.,Glavan F, Behm-Ansmant I, Izaurralde E, Conti E EMBO J. 2006 Nov 1;25(21):5117-25. Epub 2006 Oct 19. PMID:17053788<ref>PMID:17053788</ref>


===Structure of human SMG6 E1282C PIN domain mutant.===
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
{{ABSTRACT_PUBMED_17053788}}
== References ==
 
<references/>
==About this Structure==
__TOC__
[[2hwx]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2HWX OCA].
</StructureSection>
 
==Reference==
<ref group="xtra">PMID:017053788</ref><references group="xtra"/>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Behm-Ansmant, I.]]
[[Category: Behm-Ansmant, I.]]

Revision as of 12:03, 30 September 2014

Structure of human SMG6 E1282C PIN domain mutant.Structure of human SMG6 E1282C PIN domain mutant.

Structural highlights

2hwx is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Related:2hww
Gene:EST1A (Homo sapiens)
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

SMG6 and SMG5 are essential factors in nonsense-mediated mRNA decay, a conserved pathway that degrades mRNAs with premature translation termination codons. Both SMG5 and SMG6 have been predicted to contain a C-terminal PIN (PilT N-terminus) domain, present in proteins with ribonuclease activity. We have determined the structures of human SMG5 and SMG6 PIN domains. Although they share a similar overall fold related to ribonucleases of the RNase H family, they have local differences at the putative active site. SMG6 has the canonical triad of acidic residues that are crucial in RNase H for nuclease activity, while SMG5 lacks key catalytic residues. The structural differences are reflected at the functional level. Only the PIN domain of SMG6 has degradation activity on single-stranded RNA in vitro. This difference in catalytic activity is conserved in Drosophila, where an SMG6 with an inactive PIN domain inhibits NMD in a dominant-negative manner. Our findings suggest that the NMD machinery has intrinsic nuclease activity that is likely to contribute to the rapid decay of mRNAs that terminate translation prematurely.

Structures of the PIN domains of SMG6 and SMG5 reveal a nuclease within the mRNA surveillance complex.,Glavan F, Behm-Ansmant I, Izaurralde E, Conti E EMBO J. 2006 Nov 1;25(21):5117-25. Epub 2006 Oct 19. PMID:17053788[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Glavan F, Behm-Ansmant I, Izaurralde E, Conti E. Structures of the PIN domains of SMG6 and SMG5 reveal a nuclease within the mRNA surveillance complex. EMBO J. 2006 Nov 1;25(21):5117-25. Epub 2006 Oct 19. PMID:17053788

2hwx, resolution 1.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA