2gi9: Difference between revisions
m Protected "2gi9" [edit=sysop:move=sysop] |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==Backbone Conformational Constraints in a Microcrystalline U-15N-Labeled Protein by 3D Dipolar-Shift Solid-State NMR Spectroscopy== | ||
<StructureSection load='2gi9' size='340' side='right' caption='[[2gi9]], [[Resolution|resolution]] 1.14Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2gi9]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Staphylococcus_aureus Staphylococcus aureus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2GI9 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2GI9 FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1pga|1pga]]</td></tr> | |||
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">spg ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1280 Staphylococcus aureus])</td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2gi9 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2gi9 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2gi9 RCSB], [http://www.ebi.ac.uk/pdbsum/2gi9 PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/gi/2gi9_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Structural studies of uniformly labeled proteins by magic-angle spinning NMR spectroscopy have rapidly matured in recent years. Site-specific chemical shifts of several proteins have been assigned and structures determined from 2D or 3D data sets containing internuclear distance information. Here we demonstrate the application of a complementary technique for constraining protein backbone geometry using a site-resolved 3D dipolar-shift pulse sequence. The dipolar line shapes report on the relative orientations of 1H-15N[i] to 1H-15N[i+1] dipole vectors, constraining the torsion angles phi[i] and psi[i]. In addition, from the same 3D data set, several 1H-15N[i] to1H-15N[i+2] line shapes are extracted to constrain the torsion angles phi[i], psi[i], phi[i+1], and psi[i+1]. We report results for the majority of sites in the 56-residue beta1 immunoglobulin binding domain of protein G (GB1), using 3D experiments at 600 MHz 1H frequency. Excellent agreement between the SSNMR results and a new 1.14 A crystal structure illustrate the general potential of this technique for high-resolution structural refinement of solid proteins. | |||
Backbone conformational constraints in a microcrystalline U-15N-labeled protein by 3D dipolar-shift solid-state NMR spectroscopy.,Franks WT, Wylie BJ, Stellfox SA, Rienstra CM J Am Chem Soc. 2006 Mar 15;128(10):3154-5. PMID:16522090<ref>PMID:16522090</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
== | |||
< | |||
[[Category: Staphylococcus aureus]] | [[Category: Staphylococcus aureus]] | ||
[[Category: Franks, W T.]] | [[Category: Franks, W T.]] |
Revision as of 10:49, 30 September 2014
Backbone Conformational Constraints in a Microcrystalline U-15N-Labeled Protein by 3D Dipolar-Shift Solid-State NMR SpectroscopyBackbone Conformational Constraints in a Microcrystalline U-15N-Labeled Protein by 3D Dipolar-Shift Solid-State NMR Spectroscopy
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedStructural studies of uniformly labeled proteins by magic-angle spinning NMR spectroscopy have rapidly matured in recent years. Site-specific chemical shifts of several proteins have been assigned and structures determined from 2D or 3D data sets containing internuclear distance information. Here we demonstrate the application of a complementary technique for constraining protein backbone geometry using a site-resolved 3D dipolar-shift pulse sequence. The dipolar line shapes report on the relative orientations of 1H-15N[i] to 1H-15N[i+1] dipole vectors, constraining the torsion angles phi[i] and psi[i]. In addition, from the same 3D data set, several 1H-15N[i] to1H-15N[i+2] line shapes are extracted to constrain the torsion angles phi[i], psi[i], phi[i+1], and psi[i+1]. We report results for the majority of sites in the 56-residue beta1 immunoglobulin binding domain of protein G (GB1), using 3D experiments at 600 MHz 1H frequency. Excellent agreement between the SSNMR results and a new 1.14 A crystal structure illustrate the general potential of this technique for high-resolution structural refinement of solid proteins. Backbone conformational constraints in a microcrystalline U-15N-labeled protein by 3D dipolar-shift solid-state NMR spectroscopy.,Franks WT, Wylie BJ, Stellfox SA, Rienstra CM J Am Chem Soc. 2006 Mar 15;128(10):3154-5. PMID:16522090[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|