2f7c: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
m Protected "2f7c" [edit=sysop:move=sysop]
No edit summary
Line 1: Line 1:
[[Image:2f7c.png|left|200px]]
==CatM effector binding domain with its effector cis,cis-muconate==
<StructureSection load='2f7c' size='340' side='right' caption='[[2f7c]], [[Resolution|resolution]] 2.16&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[2f7c]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Acinetobacter_baylyi Acinetobacter baylyi]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2F7C OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2F7C FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CCU:(2Z,4Z)-HEXA-2,4-DIENEDIOIC+ACID'>CCU</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene><br>
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2f6g|2f6g]], [[2f6p|2f6p]], [[2f78|2f78]], [[2f7a|2f7a]], [[2f7b|2f7b]], [[2f8d|2f8d]], [[2f97|2f97]]</td></tr>
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">catM, catR ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=202950 Acinetobacter baylyi])</td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2f7c FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2f7c OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2f7c RCSB], [http://www.ebi.ac.uk/pdbsum/2f7c PDBsum]</span></td></tr>
<table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/f7/2f7c_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
BenM, a bacterial transcriptional regulator, responds synergistically to two effectors, benzoate and cis,cis-muconate. CatM, a paralog with overlapping function, responds only to muconate. Structures of their effector-binding domains revealed two effector-binding sites in BenM. BenM and CatM are the first LysR-type regulators to be structurally characterized while bound with physiologically relevant exogenous inducers. The effector complexes were obtained by soaking crystals with stabilizing solutions containing high effector concentrations and minimal amounts of competing ions. This strategy, including data collection with fragments of fractured crystals, may be generally applicable to related proteins. In BenM and CatM, the binding of muconate to an interdomain pocket was facilitated by helix dipoles that provide charge stabilization. In BenM, benzoate also bound in an adjacent hydrophobic region where it alters the effect of muconate bound in the primary site. A charge relay system within the BenM protein appears to underlie synergistic transcriptional activation. According to this model, Glu162 is a pivotal residue that forms salt-bridges with different arginine residues depending on the occupancy of the secondary effector-binding site. Glu162 interacts with Arg160 in the absence of benzoate and with Arg146 when benzoate is bound. This latter interaction enhances the negative charge of muconate bound to the adjacent primary effector-binding site. The redistribution of the electrostatic potential draws two domains of the protein more closely towards muconate, with the movement mediated by the dipole moments of four alpha helices. Therefore, with both effectors, BenM achieves a unique conformation capable of high level transcriptional activation.


{{STRUCTURE_2f7c|  PDB=2f7c  |  SCENE=  }}
Distinct effector-binding sites enable synergistic transcriptional activation by BenM, a LysR-type regulator.,Ezezika OC, Haddad S, Clark TJ, Neidle EL, Momany C J Mol Biol. 2007 Mar 30;367(3):616-29. Epub 2006 Oct 4. PMID:17291527<ref>PMID:17291527</ref>


===CatM effector binding domain with its effector cis,cis-muconate===
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
{{ABSTRACT_PUBMED_17291527}}
== References ==
 
<references/>
==About this Structure==
__TOC__
[[2f7c]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Acinetobacter_baylyi Acinetobacter baylyi]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2F7C OCA].
</StructureSection>
 
==Reference==
<ref group="xtra">PMID:017291527</ref><references group="xtra"/>
[[Category: Acinetobacter baylyi]]
[[Category: Acinetobacter baylyi]]
[[Category: Clark, T.]]
[[Category: Clark, T.]]

Revision as of 05:22, 30 September 2014

CatM effector binding domain with its effector cis,cis-muconateCatM effector binding domain with its effector cis,cis-muconate

Structural highlights

2f7c is a 1 chain structure with sequence from Acinetobacter baylyi. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Related:2f6g, 2f6p, 2f78, 2f7a, 2f7b, 2f8d, 2f97
Gene:catM, catR (Acinetobacter baylyi)
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

BenM, a bacterial transcriptional regulator, responds synergistically to two effectors, benzoate and cis,cis-muconate. CatM, a paralog with overlapping function, responds only to muconate. Structures of their effector-binding domains revealed two effector-binding sites in BenM. BenM and CatM are the first LysR-type regulators to be structurally characterized while bound with physiologically relevant exogenous inducers. The effector complexes were obtained by soaking crystals with stabilizing solutions containing high effector concentrations and minimal amounts of competing ions. This strategy, including data collection with fragments of fractured crystals, may be generally applicable to related proteins. In BenM and CatM, the binding of muconate to an interdomain pocket was facilitated by helix dipoles that provide charge stabilization. In BenM, benzoate also bound in an adjacent hydrophobic region where it alters the effect of muconate bound in the primary site. A charge relay system within the BenM protein appears to underlie synergistic transcriptional activation. According to this model, Glu162 is a pivotal residue that forms salt-bridges with different arginine residues depending on the occupancy of the secondary effector-binding site. Glu162 interacts with Arg160 in the absence of benzoate and with Arg146 when benzoate is bound. This latter interaction enhances the negative charge of muconate bound to the adjacent primary effector-binding site. The redistribution of the electrostatic potential draws two domains of the protein more closely towards muconate, with the movement mediated by the dipole moments of four alpha helices. Therefore, with both effectors, BenM achieves a unique conformation capable of high level transcriptional activation.

Distinct effector-binding sites enable synergistic transcriptional activation by BenM, a LysR-type regulator.,Ezezika OC, Haddad S, Clark TJ, Neidle EL, Momany C J Mol Biol. 2007 Mar 30;367(3):616-29. Epub 2006 Oct 4. PMID:17291527[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Ezezika OC, Haddad S, Clark TJ, Neidle EL, Momany C. Distinct effector-binding sites enable synergistic transcriptional activation by BenM, a LysR-type regulator. J Mol Biol. 2007 Mar 30;367(3):616-29. Epub 2006 Oct 4. PMID:17291527 doi:10.1016/j.jmb.2006.09.090

2f7c, resolution 2.16Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA