1z75: Difference between revisions
m Protected "1z75" [edit=sysop:move=sysop] |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==Crystal Structure of ArnA dehydrogenase (decarboxylase) domain, R619M mutant== | ||
<StructureSection load='1z75' size='340' side='right' caption='[[1z75]], [[Resolution|resolution]] 2.40Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1z75]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1Z75 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1Z75 FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene><br> | |||
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1z73|1z73]], [[1z74|1z74]], [[1z7b|1z7b]], [[1z7e|1z7e]]</td></tr> | |||
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">PMRI, YFBG ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 Escherichia coli])</td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1z75 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1z75 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1z75 RCSB], [http://www.ebi.ac.uk/pdbsum/1z75 PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/z7/1z75_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The modification of lipid A with 4-amino-4-deoxy-L-arabinose (Ara4N) allows gram-negative bacteria to resist the antimicrobial activity of cationic antimicrobial peptides and antibiotics such as polymyxin. ArnA is the first enzyme specific to the lipid A-Ara4N pathway. It contains two functionally and physically separable domains: a dehydrogenase domain (ArnA_DH) catalyzing the NAD+-dependent oxidative decarboxylation of UDP-Glucuronic acid (UDP-GlcA), and a transformylase domain that formylates UDP-Ara4N. Here, we describe the crystal structure of the full-length bifunctional ArnA with UDP-GlcA and ATP bound to the dehydrogenase domain. Binding of UDP-GlcA triggers a 17 A conformational change in ArnA_DH that opens the NAD+ binding site while trapping UDP-GlcA. We propose an ordered mechanism of substrate binding and product release. Mutation of residues R619 and S433 demonstrates their importance in catalysis and suggests that R619 functions as a general acid in catalysis. The proposed mechanism for ArnA_DH has important implications for the design of selective inhibitors. | |||
Structure and mechanism of ArnA: conformational change implies ordered dehydrogenase mechanism in key enzyme for polymyxin resistance.,Gatzeva-Topalova PZ, May AP, Sousa MC Structure. 2005 Jun;13(6):929-42. PMID:15939024<ref>PMID:15939024</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
== | |||
< | |||
[[Category: Escherichia coli]] | [[Category: Escherichia coli]] | ||
[[Category: Gatzeva-Topalova, P Z.]] | [[Category: Gatzeva-Topalova, P Z.]] |
Revision as of 00:21, 30 September 2014
Crystal Structure of ArnA dehydrogenase (decarboxylase) domain, R619M mutantCrystal Structure of ArnA dehydrogenase (decarboxylase) domain, R619M mutant
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe modification of lipid A with 4-amino-4-deoxy-L-arabinose (Ara4N) allows gram-negative bacteria to resist the antimicrobial activity of cationic antimicrobial peptides and antibiotics such as polymyxin. ArnA is the first enzyme specific to the lipid A-Ara4N pathway. It contains two functionally and physically separable domains: a dehydrogenase domain (ArnA_DH) catalyzing the NAD+-dependent oxidative decarboxylation of UDP-Glucuronic acid (UDP-GlcA), and a transformylase domain that formylates UDP-Ara4N. Here, we describe the crystal structure of the full-length bifunctional ArnA with UDP-GlcA and ATP bound to the dehydrogenase domain. Binding of UDP-GlcA triggers a 17 A conformational change in ArnA_DH that opens the NAD+ binding site while trapping UDP-GlcA. We propose an ordered mechanism of substrate binding and product release. Mutation of residues R619 and S433 demonstrates their importance in catalysis and suggests that R619 functions as a general acid in catalysis. The proposed mechanism for ArnA_DH has important implications for the design of selective inhibitors. Structure and mechanism of ArnA: conformational change implies ordered dehydrogenase mechanism in key enzyme for polymyxin resistance.,Gatzeva-Topalova PZ, May AP, Sousa MC Structure. 2005 Jun;13(6):929-42. PMID:15939024[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|