1tp4: Difference between revisions
m Protected "1tp4" [edit=sysop:move=sysop] |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==Solution structure of the XPC binding domain of hHR23A protein== | ||
<StructureSection load='1tp4' size='340' side='right' caption='[[1tp4]], [[NMR_Ensembles_of_Models | 25 NMR models]]' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1tp4]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1TP4 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1TP4 FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">RAD23A ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])</td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1tp4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1tp4 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1tp4 RCSB], [http://www.ebi.ac.uk/pdbsum/1tp4 PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/tp/1tp4_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Rad23 proteins are involved both in the ubiquitin-proteasome pathway and in nucleotide excision repair (NER), but the relationship between these two pathways is not yet understood. The two human homologs of Rad23, hHR23A and B, are functionally redundant in NER and interact with xeroderma pigmentosum complementation group C (XPC) protein. The XPC-hHR23 complex is responsible for the specific recognition of damaged DNA, which is an early step in NER. The interaction of the XPC binding domain (XPCB) of hHR23A/B with XPC protein has been shown to be important for its optimal function in NER. We have determined the solution structure of XPCB of hHR23A. The domain consists of five amphipathic helices and reveals hydrophobic patches on the otherwise highly hydrophilic domain surface. The patches are predicted to be involved in interaction with XPC. The XPCB domain has limited sequence homology with any proteins outside of the Rad23 family except for sacsin, a protein involved in spastic ataxia of Charlevoix-Saguenay, which contains a domain with 35% sequence identity. | |||
Structure of the XPC binding domain of hHR23A reveals hydrophobic patches for protein interaction.,Kamionka M, Feigon J Protein Sci. 2004 Sep;13(9):2370-7. PMID:15322280<ref>PMID:15322280</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
== References == | |||
<references/> | |||
__TOC__ | |||
</StructureSection> | |||
== | |||
< | |||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: Feigon, J.]] | [[Category: Feigon, J.]] |
Revision as of 22:47, 29 September 2014
Solution structure of the XPC binding domain of hHR23A proteinSolution structure of the XPC binding domain of hHR23A protein
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedRad23 proteins are involved both in the ubiquitin-proteasome pathway and in nucleotide excision repair (NER), but the relationship between these two pathways is not yet understood. The two human homologs of Rad23, hHR23A and B, are functionally redundant in NER and interact with xeroderma pigmentosum complementation group C (XPC) protein. The XPC-hHR23 complex is responsible for the specific recognition of damaged DNA, which is an early step in NER. The interaction of the XPC binding domain (XPCB) of hHR23A/B with XPC protein has been shown to be important for its optimal function in NER. We have determined the solution structure of XPCB of hHR23A. The domain consists of five amphipathic helices and reveals hydrophobic patches on the otherwise highly hydrophilic domain surface. The patches are predicted to be involved in interaction with XPC. The XPCB domain has limited sequence homology with any proteins outside of the Rad23 family except for sacsin, a protein involved in spastic ataxia of Charlevoix-Saguenay, which contains a domain with 35% sequence identity. Structure of the XPC binding domain of hHR23A reveals hydrophobic patches for protein interaction.,Kamionka M, Feigon J Protein Sci. 2004 Sep;13(9):2370-7. PMID:15322280[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|