1zlp: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
m Protected "1zlp" [edit=sysop:move=sysop]
No edit summary
Line 1: Line 1:
[[Image:1zlp.png|left|200px]]
==Petal death protein PSR132 with cysteine-linked glutaraldehyde forming a thiohemiacetal adduct==
<StructureSection load='1zlp' size='340' side='right' caption='[[1zlp]], [[Resolution|resolution]] 2.70&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[1zlp]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Dianthus_caryophyllus Dianthus caryophyllus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1ZLP OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1ZLP FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GAQ:5-HYDROXYPENTANAL'>GAQ</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene><br>
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">PSR132 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=3570 Dianthus caryophyllus])</td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1zlp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1zlp OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1zlp RCSB], [http://www.ebi.ac.uk/pdbsum/1zlp PDBsum]</span></td></tr>
<table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/zl/1zlp_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Expression of the PSR132 protein from Dianthus caryophyllus (carnation, clover pink) is induced in response to ethylene production associated with petal senescence, and thus the protein is named petal death protein (PDP). Recent work has established that despite the annotation of PDP in sequence databases as carboxyphosphoenolpyruvate mutase, the enzyme is actually a C-C bond cleaving lyase exhibiting a broad substrate profile. The crystal structure of PDP has been determined at 2.7 A resolution, revealing a dimer-of-dimers oligomeric association. Consistent with sequence homology, the overall alpha/beta barrel fold of PDP is the same as that of other isocitrate lyase/PEP mutase superfamily members, including a swapped eighth helix within a dimer. Moreover, Mg(2+) binds in the active site of PDP with a coordination pattern similar to that seen in other superfamily members. A compound, covalently bound to the catalytic residue, Cys144, was interpreted as a thiohemiacetal adduct resulting from the reaction of glutaraldehyde used to cross-link the crystals. The Cys144-carrying flexible loop that gates access to the active site is in the closed conformation. Models of bound substrates and comparison with the closed conformation of isocitrate lyase and 2-methylisocitrate lyase revealed the structural basis for the broad substrate profile of PDP.


{{STRUCTURE_1zlp|  PDB=1zlp  |  SCENE=  }}
Crystal structure of the petal death protein from carnation flower.,Teplyakov A, Liu S, Lu Z, Howard A, Dunaway-Mariano D, Herzberg O Biochemistry. 2005 Dec 20;44(50):16377-84. PMID:16342930<ref>PMID:16342930</ref>


===Petal death protein PSR132 with cysteine-linked glutaraldehyde forming a thiohemiacetal adduct===
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
{{ABSTRACT_PUBMED_16342930}}
== References ==
 
<references/>
==About this Structure==
__TOC__
[[1zlp]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Dianthus_caryophyllus Dianthus caryophyllus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1ZLP OCA].
</StructureSection>
 
==Reference==
<ref group="xtra">PMID:016342930</ref><references group="xtra"/>
[[Category: Dianthus caryophyllus]]
[[Category: Dianthus caryophyllus]]
[[Category: Dunaway-Mariano, D.]]
[[Category: Dunaway-Mariano, D.]]

Revision as of 22:20, 29 September 2014

Petal death protein PSR132 with cysteine-linked glutaraldehyde forming a thiohemiacetal adductPetal death protein PSR132 with cysteine-linked glutaraldehyde forming a thiohemiacetal adduct

Structural highlights

1zlp is a 2 chain structure with sequence from Dianthus caryophyllus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Gene:PSR132 (Dianthus caryophyllus)
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Expression of the PSR132 protein from Dianthus caryophyllus (carnation, clover pink) is induced in response to ethylene production associated with petal senescence, and thus the protein is named petal death protein (PDP). Recent work has established that despite the annotation of PDP in sequence databases as carboxyphosphoenolpyruvate mutase, the enzyme is actually a C-C bond cleaving lyase exhibiting a broad substrate profile. The crystal structure of PDP has been determined at 2.7 A resolution, revealing a dimer-of-dimers oligomeric association. Consistent with sequence homology, the overall alpha/beta barrel fold of PDP is the same as that of other isocitrate lyase/PEP mutase superfamily members, including a swapped eighth helix within a dimer. Moreover, Mg(2+) binds in the active site of PDP with a coordination pattern similar to that seen in other superfamily members. A compound, covalently bound to the catalytic residue, Cys144, was interpreted as a thiohemiacetal adduct resulting from the reaction of glutaraldehyde used to cross-link the crystals. The Cys144-carrying flexible loop that gates access to the active site is in the closed conformation. Models of bound substrates and comparison with the closed conformation of isocitrate lyase and 2-methylisocitrate lyase revealed the structural basis for the broad substrate profile of PDP.

Crystal structure of the petal death protein from carnation flower.,Teplyakov A, Liu S, Lu Z, Howard A, Dunaway-Mariano D, Herzberg O Biochemistry. 2005 Dec 20;44(50):16377-84. PMID:16342930[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Teplyakov A, Liu S, Lu Z, Howard A, Dunaway-Mariano D, Herzberg O. Crystal structure of the petal death protein from carnation flower. Biochemistry. 2005 Dec 20;44(50):16377-84. PMID:16342930 doi:10.1021/bi051779y

1zlp, resolution 2.70Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA