1tri: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
{{STRUCTURE_1tri|  PDB=1tri  |  SCENE=  }}
==THE CRYSTAL STRUCTURE OF AN ENGINEERED MONOMERIC TRIOSEPHOSPHATE ISOMERASE, MONOTIM: THE CORRECT MODELLING OF AN EIGHT-RESIDUE LOOP==
===THE CRYSTAL STRUCTURE OF AN ENGINEERED MONOMERIC TRIOSEPHOSPHATE ISOMERASE, MONOTIM: THE CORRECT MODELLING OF AN EIGHT-RESIDUE LOOP===
<StructureSection load='1tri' size='340' side='right' caption='[[1tri]], [[Resolution|resolution]] 2.40&Aring;' scene=''>
{{ABSTRACT_PUBMED_16100954}}
== Structural highlights ==
<table><tr><td colspan='2'>[[1tri]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Trypanosoma_brucei_brucei Trypanosoma brucei brucei]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1TRI OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1TRI FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene><br>
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Triose-phosphate_isomerase Triose-phosphate isomerase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=5.3.1.1 5.3.1.1] </span></td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1tri FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1tri OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1tri RCSB], [http://www.ebi.ac.uk/pdbsum/1tri PDBsum]</span></td></tr>
<table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/tr/1tri_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
BACKGROUND: The triosephosphate isomerase (TIM) fold is found in several different classes of enzymes, most of which are oligomers; TIM itself always functions as a very tight dimer. It has recently been shown that a monomeric form of TIM ('monoTIM') can be constructed by replacing a 15-residue interface loop, loop-3, with an eight-residue fragment; modelling suggests that this should result in a short strain-free turn, resulting in the subsequent helix, helix-A3, having an additional turn at its amino terminus. RESULTS: The crystal structure of monoTIM shows that it retains the characteristic TIM-barrel (betaalpha)8-fold and that the new loop has a structure very close to that predicted. Two other interface loops, loop-1 and loop-4, which contain the active site residues Lys13 and His95, respectively, show significant changes in structure in monoTIM compared with dimeric wild-type TIM. CONCLUSION: The observed structural differences between monoTIM and wild-type TIM indicate that the dimeric appearance of TIM determines the location and conformation of two of the four catalytic residues.


==About this Structure==
The crystal structure of an engineered monomeric triosephosphate isomerase, monoTIM: the correct modelling of an eight-residue loop.,Borchert TV, Abagyan R, Kishan KV, Zeelen JP, Wierenga RK Structure. 1993 Nov 15;1(3):205-13. PMID:16100954<ref>PMID:16100954</ref>
[[1tri]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Trypanosoma_brucei_brucei Trypanosoma brucei brucei]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1TRI OCA].
 
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>


==See Also==
==See Also==
*[[Triose Phosphate Isomerase|Triose Phosphate Isomerase]]
*[[Triose Phosphate Isomerase|Triose Phosphate Isomerase]]
 
== References ==
==Reference==
<references/>
<ref group="xtra">PMID:016100954</ref><ref group="xtra">PMID:014695246</ref><references group="xtra"/>
__TOC__
</StructureSection>
[[Category: Triose-phosphate isomerase]]
[[Category: Triose-phosphate isomerase]]
[[Category: Trypanosoma brucei brucei]]
[[Category: Trypanosoma brucei brucei]]
[[Category: Wierenga, R K.]]
[[Category: Wierenga, R K.]]

Revision as of 21:41, 29 September 2014

THE CRYSTAL STRUCTURE OF AN ENGINEERED MONOMERIC TRIOSEPHOSPHATE ISOMERASE, MONOTIM: THE CORRECT MODELLING OF AN EIGHT-RESIDUE LOOPTHE CRYSTAL STRUCTURE OF AN ENGINEERED MONOMERIC TRIOSEPHOSPHATE ISOMERASE, MONOTIM: THE CORRECT MODELLING OF AN EIGHT-RESIDUE LOOP

Structural highlights

1tri is a 1 chain structure with sequence from Trypanosoma brucei brucei. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Activity:Triose-phosphate isomerase, with EC number 5.3.1.1
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

BACKGROUND: The triosephosphate isomerase (TIM) fold is found in several different classes of enzymes, most of which are oligomers; TIM itself always functions as a very tight dimer. It has recently been shown that a monomeric form of TIM ('monoTIM') can be constructed by replacing a 15-residue interface loop, loop-3, with an eight-residue fragment; modelling suggests that this should result in a short strain-free turn, resulting in the subsequent helix, helix-A3, having an additional turn at its amino terminus. RESULTS: The crystal structure of monoTIM shows that it retains the characteristic TIM-barrel (betaalpha)8-fold and that the new loop has a structure very close to that predicted. Two other interface loops, loop-1 and loop-4, which contain the active site residues Lys13 and His95, respectively, show significant changes in structure in monoTIM compared with dimeric wild-type TIM. CONCLUSION: The observed structural differences between monoTIM and wild-type TIM indicate that the dimeric appearance of TIM determines the location and conformation of two of the four catalytic residues.

The crystal structure of an engineered monomeric triosephosphate isomerase, monoTIM: the correct modelling of an eight-residue loop.,Borchert TV, Abagyan R, Kishan KV, Zeelen JP, Wierenga RK Structure. 1993 Nov 15;1(3):205-13. PMID:16100954[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Borchert TV, Abagyan R, Kishan KV, Zeelen JP, Wierenga RK. The crystal structure of an engineered monomeric triosephosphate isomerase, monoTIM: the correct modelling of an eight-residue loop. Structure. 1993 Nov 15;1(3):205-13. PMID:16100954

1tri, resolution 2.40Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA