1yap: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==CONTRIBUTION OF HYDROPHOBIC RESIDUES TO THE STABILITY OF HUMAN LYSOZYME: CALORIMETRIC STUDIES AND X-RAY STRUCTURAL ANALYSIS OF THE FIVE ISOLEUCINE TO VALINE MUTANTS== | |||
<StructureSection load='1yap' size='340' side='right' caption='[[1yap]], [[Resolution|resolution]] 1.80Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1yap]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1YAP OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1YAP FirstGlance]. <br> | |||
==Disease== | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=NA:SODIUM+ION'>NA</scene><br> | ||
[[http://www.uniprot.org/uniprot/LYSC_HUMAN LYSC_HUMAN]] Defects in LYZ are a cause of amyloidosis type 8 (AMYL8) [MIM:[http://omim.org/entry/105200 105200]]; also known as systemic non-neuropathic amyloidosis or Ostertag-type amyloidosis. AMYL8 is a hereditary generalized amyloidosis due to deposition of apolipoprotein A1, fibrinogen and lysozyme amyloids. Viscera are particularly affected. There is no involvement of the nervous system. Clinical features include renal amyloidosis resulting in nephrotic syndrome, arterial hypertension, hepatosplenomegaly, cholestasis, petechial skin rash.<ref>PMID:8464497</ref> | <tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">HUMAN LYSOZYME WITH ILE 59 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])</td></tr> | ||
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Lysozyme Lysozyme], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.17 3.2.1.17] </span></td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1yap FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1yap OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1yap RCSB], [http://www.ebi.ac.uk/pdbsum/1yap PDBsum]</span></td></tr> | |||
<table> | |||
== Disease == | |||
[[http://www.uniprot.org/uniprot/LYSC_HUMAN LYSC_HUMAN]] Defects in LYZ are a cause of amyloidosis type 8 (AMYL8) [MIM:[http://omim.org/entry/105200 105200]]; also known as systemic non-neuropathic amyloidosis or Ostertag-type amyloidosis. AMYL8 is a hereditary generalized amyloidosis due to deposition of apolipoprotein A1, fibrinogen and lysozyme amyloids. Viscera are particularly affected. There is no involvement of the nervous system. Clinical features include renal amyloidosis resulting in nephrotic syndrome, arterial hypertension, hepatosplenomegaly, cholestasis, petechial skin rash.<ref>PMID:8464497</ref> | |||
== Function == | |||
[[http://www.uniprot.org/uniprot/LYSC_HUMAN LYSC_HUMAN]] Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents. | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ya/1yap_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
In order to understand the contribution of hydrophobic residues to the conformational stability of human lysozyme, five Ile mutants (Ile --> Val) in the interior of the protein were constructed. The thermodynamic parameters characterizing the denaturation of these mutant proteins were determined by scanning calorimetry, and the three-dimensional structure of each mutant protein was solved at high resolution by X-ray crystallography. The thermodynamic analyses at 64.9 degrees C and at pH 2.7 revealed the following. (1) The stabilities of all the mutant proteins were decreased as compared with that of the wild-type protein. (2) The changes in the calorimetric enthalpies were larger than those in the Gibbs energies, and were compensated by entropy changes. (3) The destabilization mechanism of the mutant proteins differs, depending on the location of the mutation sites. X-ray analyses showed that the overall structures of all the mutant human lysozymes examined were identical to that of the wild-type protein, and only small structural rearrangements were observed locally around some of the mutation sites. The most striking change among the mutant proteins was found in the mutant protein, 159V, which contains a new water molecule in the cavity created by the mutation. The thermodynamic stabilities of the mutant proteins are discussed in light of the high-resolution X-ray structures of the wild-type and five mutant human lysozymes examined. | |||
Contribution of hydrophobic residues to the stability of human lysozyme: calorimetric studies and X-ray structural analysis of the five isoleucine to valine mutants.,Takano K, Ogasahara K, Kaneda H, Yamagata Y, Fujii S, Kanaya E, Kikuchi M, Oobatake M, Yutani K J Mol Biol. 1995 Nov 17;254(1):62-76. PMID:7473760<ref>PMID:7473760</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | ==See Also== | ||
*[[ | *[[Lysozyme 3D structures|Lysozyme 3D structures]] | ||
== References == | |||
== | <references/> | ||
__TOC__ | |||
</StructureSection> | |||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: Lysozyme]] | [[Category: Lysozyme]] |
Revision as of 21:25, 29 September 2014
CONTRIBUTION OF HYDROPHOBIC RESIDUES TO THE STABILITY OF HUMAN LYSOZYME: CALORIMETRIC STUDIES AND X-RAY STRUCTURAL ANALYSIS OF THE FIVE ISOLEUCINE TO VALINE MUTANTSCONTRIBUTION OF HYDROPHOBIC RESIDUES TO THE STABILITY OF HUMAN LYSOZYME: CALORIMETRIC STUDIES AND X-RAY STRUCTURAL ANALYSIS OF THE FIVE ISOLEUCINE TO VALINE MUTANTS
Structural highlights
Disease[LYSC_HUMAN] Defects in LYZ are a cause of amyloidosis type 8 (AMYL8) [MIM:105200]; also known as systemic non-neuropathic amyloidosis or Ostertag-type amyloidosis. AMYL8 is a hereditary generalized amyloidosis due to deposition of apolipoprotein A1, fibrinogen and lysozyme amyloids. Viscera are particularly affected. There is no involvement of the nervous system. Clinical features include renal amyloidosis resulting in nephrotic syndrome, arterial hypertension, hepatosplenomegaly, cholestasis, petechial skin rash.[1] Function[LYSC_HUMAN] Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedIn order to understand the contribution of hydrophobic residues to the conformational stability of human lysozyme, five Ile mutants (Ile --> Val) in the interior of the protein were constructed. The thermodynamic parameters characterizing the denaturation of these mutant proteins were determined by scanning calorimetry, and the three-dimensional structure of each mutant protein was solved at high resolution by X-ray crystallography. The thermodynamic analyses at 64.9 degrees C and at pH 2.7 revealed the following. (1) The stabilities of all the mutant proteins were decreased as compared with that of the wild-type protein. (2) The changes in the calorimetric enthalpies were larger than those in the Gibbs energies, and were compensated by entropy changes. (3) The destabilization mechanism of the mutant proteins differs, depending on the location of the mutation sites. X-ray analyses showed that the overall structures of all the mutant human lysozymes examined were identical to that of the wild-type protein, and only small structural rearrangements were observed locally around some of the mutation sites. The most striking change among the mutant proteins was found in the mutant protein, 159V, which contains a new water molecule in the cavity created by the mutation. The thermodynamic stabilities of the mutant proteins are discussed in light of the high-resolution X-ray structures of the wild-type and five mutant human lysozymes examined. Contribution of hydrophobic residues to the stability of human lysozyme: calorimetric studies and X-ray structural analysis of the five isoleucine to valine mutants.,Takano K, Ogasahara K, Kaneda H, Yamagata Y, Fujii S, Kanaya E, Kikuchi M, Oobatake M, Yutani K J Mol Biol. 1995 Nov 17;254(1):62-76. PMID:7473760[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|