1a35: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==HUMAN TOPOISOMERASE I/DNA COMPLEX== | |||
=== | <StructureSection load='1a35' size='340' side='right' caption='[[1a35]], [[Resolution|resolution]] 2.50Å' scene=''> | ||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1a35]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1A35 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1A35 FirstGlance]. <br> | |||
==Disease== | </td></tr><tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=BRU:5-BROMO-2-DEOXYURIDINE-5-MONOPHOSPHATE'>BRU</scene></td></tr> | ||
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/DNA_topoisomerase DNA topoisomerase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=5.99.1.2 5.99.1.2] </span></td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1a35 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1a35 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1a35 RCSB], [http://www.ebi.ac.uk/pdbsum/1a35 PDBsum]</span></td></tr> | |||
<table> | |||
== Disease == | |||
[[http://www.uniprot.org/uniprot/TOP1_HUMAN TOP1_HUMAN]] Note=A chromosomal aberration involving TOP1 is found in a form of therapy-related myelodysplastic syndrome. Translocation t(11;20)(p15;q11) with NUP98. | [[http://www.uniprot.org/uniprot/TOP1_HUMAN TOP1_HUMAN]] Note=A chromosomal aberration involving TOP1 is found in a form of therapy-related myelodysplastic syndrome. Translocation t(11;20)(p15;q11) with NUP98. | ||
== Function == | |||
[[http://www.uniprot.org/uniprot/TOP1_HUMAN TOP1_HUMAN]] Releases the supercoiling and torsional tension of DNA introduced during the DNA replication and transcription by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA-(3'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 5'-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand thus removing DNA supercoils. Finally, in the religation step, the DNA 5'-OH attacks the covalent intermediate to expel the active-site tyrosine and restore the DNA phosphodiester backbone (By similarity). Regulates the alternative splicing of tissue factor (F3) pre-mRNA in endothelial cells.<ref>PMID:2833744</ref> <ref>PMID:19168442</ref> <ref>PMID:14594810</ref> <ref>PMID:16033260</ref> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/a3/1a35_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Topoisomerases I promote the relaxation of DNA superhelical tension by introducing a transient single-stranded break in duplex DNA and are vital for the processes of replication, transcription, and recombination. The crystal structures at 2.1 and 2.5 angstrom resolution of reconstituted human topoisomerase I comprising the core and carboxyl-terminal domains in covalent and noncovalent complexes with 22-base pair DNA duplexes reveal an enzyme that "clamps" around essentially B-form DNA. The core domain and the first eight residues of the carboxyl-terminal domain of the enzyme, including the active-site nucleophile tyrosine-723, share significant structural similarity with the bacteriophage family of DNA integrases. A binding mode for the anticancer drug camptothecin is proposed on the basis of chemical and biochemical information combined with these three-dimensional structures of topoisomerase I-DNA complexes. | |||
Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA.,Redinbo MR, Stewart L, Kuhn P, Champoux JJ, Hol WG Science. 1998 Mar 6;279(5356):1504-13. PMID:9488644<ref>PMID:9488644</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | ==See Also== | ||
*[[Topoisomerase|Topoisomerase]] | *[[Topoisomerase|Topoisomerase]] | ||
== References == | |||
== | <references/> | ||
__TOC__ | |||
</StructureSection> | |||
[[Category: DNA topoisomerase]] | [[Category: DNA topoisomerase]] | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] |
Revision as of 20:20, 29 September 2014
HUMAN TOPOISOMERASE I/DNA COMPLEXHUMAN TOPOISOMERASE I/DNA COMPLEX
Structural highlights
Disease[TOP1_HUMAN] Note=A chromosomal aberration involving TOP1 is found in a form of therapy-related myelodysplastic syndrome. Translocation t(11;20)(p15;q11) with NUP98. Function[TOP1_HUMAN] Releases the supercoiling and torsional tension of DNA introduced during the DNA replication and transcription by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA-(3'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 5'-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand thus removing DNA supercoils. Finally, in the religation step, the DNA 5'-OH attacks the covalent intermediate to expel the active-site tyrosine and restore the DNA phosphodiester backbone (By similarity). Regulates the alternative splicing of tissue factor (F3) pre-mRNA in endothelial cells.[1] [2] [3] [4] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedTopoisomerases I promote the relaxation of DNA superhelical tension by introducing a transient single-stranded break in duplex DNA and are vital for the processes of replication, transcription, and recombination. The crystal structures at 2.1 and 2.5 angstrom resolution of reconstituted human topoisomerase I comprising the core and carboxyl-terminal domains in covalent and noncovalent complexes with 22-base pair DNA duplexes reveal an enzyme that "clamps" around essentially B-form DNA. The core domain and the first eight residues of the carboxyl-terminal domain of the enzyme, including the active-site nucleophile tyrosine-723, share significant structural similarity with the bacteriophage family of DNA integrases. A binding mode for the anticancer drug camptothecin is proposed on the basis of chemical and biochemical information combined with these three-dimensional structures of topoisomerase I-DNA complexes. Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA.,Redinbo MR, Stewart L, Kuhn P, Champoux JJ, Hol WG Science. 1998 Mar 6;279(5356):1504-13. PMID:9488644[5] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|