1ewh: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==STRUCTURE OF CYTOCHROME F FROM CHLAMYDOMONAS REINHARDTII== | |||
=== | <StructureSection load='1ewh' size='340' side='right' caption='[[1ewh]], [[Resolution|resolution]] 2.35Å' scene=''> | ||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1ewh]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/Chlamydomonas_reinhardtii Chlamydomonas reinhardtii]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1EWH OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1EWH FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene><br> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1ewh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1ewh OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1ewh RCSB], [http://www.ebi.ac.uk/pdbsum/1ewh PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ew/1ewh_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The structure of cytochrome f includes an internal chain of five water molecules and six hydrogen-bonding side chains, which are conserved throughout the phylogenetic range of photosynthetic organisms from higher plants, algae, and cyanobacteria. The in vivo electron transfer capability of Chlamydomonas reinhardtii cytochrome f was impaired in site-directed mutants of the conserved Asn and Gln residues that form hydrogen bonds with water molecules of the internal chain [Ponamarev, M. V., and Cramer, W. A. (1998) Biochemistry 37, 17199-17208]. The 251-residue extrinsic functional domain of C. reinhardtii cytochrome f was expressed in Escherichia coli without the 35 C-terminal residues of the intact cytochrome that contain the membrane anchor. Crystal structures were determined for the wild type and three "water chain" mutants (N168F, Q158L, and N153Q) having impaired photosynthetic and electron transfer function. The mutant cytochromes were produced, folded, and assembled heme at levels identical to that of the wild type in the E. coli expression system. N168F, which had a non-photosynthetic phenotype and was thus most affected by mutational substitution, also had the greatest structural perturbation with two water molecules (W4 and W5) displaced from the internal chain. Q158L, the photosynthetic mutant with the largest impairment of in vivo electron transfer, had a more weakly bound water at one position (W1). N153Q, a less impaired photosynthetic mutant, had an internal water chain with positions and hydrogen bonds identical to those of the wild type. The structure data imply that the waters of the internal chain, in addition to the surrounding protein, have a significant role in cytochrome f function. | |||
Interruption of the internal water chain of cytochrome f impairs photosynthetic function.,Sainz G, Carrell CJ, Ponamarev MV, Soriano GM, Cramer WA, Smith JL Biochemistry. 2000 Aug 8;39(31):9164-73. PMID:10924110<ref>PMID:10924110</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | ==See Also== | ||
*[[Cytochrome f|Cytochrome f]] | *[[Cytochrome f|Cytochrome f]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: Chlamydomonas reinhardtii]] | [[Category: Chlamydomonas reinhardtii]] | ||
[[Category: Carrell, C J.]] | [[Category: Carrell, C J.]] |
Revision as of 19:21, 29 September 2014
STRUCTURE OF CYTOCHROME F FROM CHLAMYDOMONAS REINHARDTIISTRUCTURE OF CYTOCHROME F FROM CHLAMYDOMONAS REINHARDTII
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe structure of cytochrome f includes an internal chain of five water molecules and six hydrogen-bonding side chains, which are conserved throughout the phylogenetic range of photosynthetic organisms from higher plants, algae, and cyanobacteria. The in vivo electron transfer capability of Chlamydomonas reinhardtii cytochrome f was impaired in site-directed mutants of the conserved Asn and Gln residues that form hydrogen bonds with water molecules of the internal chain [Ponamarev, M. V., and Cramer, W. A. (1998) Biochemistry 37, 17199-17208]. The 251-residue extrinsic functional domain of C. reinhardtii cytochrome f was expressed in Escherichia coli without the 35 C-terminal residues of the intact cytochrome that contain the membrane anchor. Crystal structures were determined for the wild type and three "water chain" mutants (N168F, Q158L, and N153Q) having impaired photosynthetic and electron transfer function. The mutant cytochromes were produced, folded, and assembled heme at levels identical to that of the wild type in the E. coli expression system. N168F, which had a non-photosynthetic phenotype and was thus most affected by mutational substitution, also had the greatest structural perturbation with two water molecules (W4 and W5) displaced from the internal chain. Q158L, the photosynthetic mutant with the largest impairment of in vivo electron transfer, had a more weakly bound water at one position (W1). N153Q, a less impaired photosynthetic mutant, had an internal water chain with positions and hydrogen bonds identical to those of the wild type. The structure data imply that the waters of the internal chain, in addition to the surrounding protein, have a significant role in cytochrome f function. Interruption of the internal water chain of cytochrome f impairs photosynthetic function.,Sainz G, Carrell CJ, Ponamarev MV, Soriano GM, Cramer WA, Smith JL Biochemistry. 2000 Aug 8;39(31):9164-73. PMID:10924110[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|