1pex: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
{{STRUCTURE_1pex|  PDB=1pex  |  SCENE=  }}
==COLLAGENASE-3 (MMP-13) C-TERMINAL HEMOPEXIN-LIKE DOMAIN==
===COLLAGENASE-3 (MMP-13) C-TERMINAL HEMOPEXIN-LIKE DOMAIN===
<StructureSection load='1pex' size='340' side='right' caption='[[1pex]], [[Resolution|resolution]] 2.70&Aring;' scene=''>
{{ABSTRACT_PUBMED_8969305}}
== Structural highlights ==
 
<table><tr><td colspan='2'>[[1pex]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1PEX OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1PEX FirstGlance]. <br>
==Disease==
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene><br>
[[http://www.uniprot.org/uniprot/MMP13_HUMAN MMP13_HUMAN]] Defects in MMP13 are the cause of spondyloepimetaphyseal dysplasia Missouri type (SEMD-MO) [MIM:[http://omim.org/entry/602111 602111]]. A bone disease characterized by moderate to severe metaphyseal changes, mild epiphyseal involvement, rhizomelic shortening of the lower limbs with bowing of the femora and/or tibiae, coxa vara, genu varum and pear-shaped vertebrae in childhood. Epimetaphyseal changes improve with age.<ref>PMID:16167086</ref> Defects in MMP13 are the cause of metaphyseal anadysplasia type 1 (MANDP1) [MIM:[http://omim.org/entry/602111 602111]]. Metaphyseal anadysplasia consists of an abnormal bone development characterized by severe skeletal changes that, in contrast with the progressive course of most other skeletal dysplasias, resolve spontaneously with age. Clinical characteristics are evident from the first months of life and include slight shortness of stature and a mild varus deformity of the legs. Patients attain a normal stature in adolescence and show improvement or complete resolution of varus deformity of the legs and rhizomelic micromelia.<ref>PMID:19615667</ref>  
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1pex FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1pex OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1pex RCSB], [http://www.ebi.ac.uk/pdbsum/1pex PDBsum]</span></td></tr>
<table>
== Disease ==
[[http://www.uniprot.org/uniprot/MMP13_HUMAN MMP13_HUMAN]] Defects in MMP13 are the cause of spondyloepimetaphyseal dysplasia Missouri type (SEMD-MO) [MIM:[http://omim.org/entry/602111 602111]]. A bone disease characterized by moderate to severe metaphyseal changes, mild epiphyseal involvement, rhizomelic shortening of the lower limbs with bowing of the femora and/or tibiae, coxa vara, genu varum and pear-shaped vertebrae in childhood. Epimetaphyseal changes improve with age.<ref>PMID:16167086</ref>   Defects in MMP13 are the cause of metaphyseal anadysplasia type 1 (MANDP1) [MIM:[http://omim.org/entry/602111 602111]]. Metaphyseal anadysplasia consists of an abnormal bone development characterized by severe skeletal changes that, in contrast with the progressive course of most other skeletal dysplasias, resolve spontaneously with age. Clinical characteristics are evident from the first months of life and include slight shortness of stature and a mild varus deformity of the legs. Patients attain a normal stature in adolescence and show improvement or complete resolution of varus deformity of the legs and rhizomelic micromelia.<ref>PMID:19615667</ref>
== Function ==
[[http://www.uniprot.org/uniprot/MMP13_HUMAN MMP13_HUMAN]] Degrades collagen type I. Does not act on gelatin or casein. Could have a role in tumoral process.
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/pe/1pex_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Collagenase-3 (MMP-13) is a matrix metalloproteinase involved in human breast cancer pathology and in arthritic processes. The crystal structure of its C-terminal haemopexin-like domain has been solved by molecular replacement and refined to an R-value of 0.195 using data to 2.7 A resolution. This structure reveals a disk-like shape. The chain is folded into a beta-propeller structure of pseudo 4-fold symmetry, with the four propeller blades arranged around a funnel-like tunnel. This central tunnel tube harbours four ions assigned as two calcium and two chloride ions. The C-terminal domain of collagenase-3 has a similar structure to the equivalent domain of gelatinase A and fibroblast collagenase 1; however, its detailed structure and surface charge pattern has a somewhat greater similarity to the latter, in agreement with the subgrouping of MMP-13 with the collagenase subfamily of MMPs. It is proposed that several small structural differences may act together to confer the characteristic binding and cleavage specificities of collagenases for triple-helical substrates, probably in co-operation with a fitting interdomain linker.


==Function==
The helping hand of collagenase-3 (MMP-13): 2.7 A crystal structure of its C-terminal haemopexin-like domain.,Gomis-Ruth FX, Gohlke U, Betz M, Knauper V, Murphy G, Lopez-Otin C, Bode W J Mol Biol. 1996 Dec 6;264(3):556-66. PMID:8969305<ref>PMID:8969305</ref>
[[http://www.uniprot.org/uniprot/MMP13_HUMAN MMP13_HUMAN]] Degrades collagen type I. Does not act on gelatin or casein. Could have a role in tumoral process.  


==About this Structure==
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
[[1pex]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1PEX OCA].
</div>


==See Also==
==See Also==
*[[Matrix metalloproteinase|Matrix metalloproteinase]]
*[[Matrix metalloproteinase|Matrix metalloproteinase]]
 
== References ==
==Reference==
<references/>
<ref group="xtra">PMID:008969305</ref><references group="xtra"/><references/>
__TOC__
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Betz, M.]]
[[Category: Betz, M.]]

Revision as of 19:10, 29 September 2014

COLLAGENASE-3 (MMP-13) C-TERMINAL HEMOPEXIN-LIKE DOMAINCOLLAGENASE-3 (MMP-13) C-TERMINAL HEMOPEXIN-LIKE DOMAIN

Structural highlights

1pex is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, ,
Resources:FirstGlance, OCA, RCSB, PDBsum

Disease

[MMP13_HUMAN] Defects in MMP13 are the cause of spondyloepimetaphyseal dysplasia Missouri type (SEMD-MO) [MIM:602111]. A bone disease characterized by moderate to severe metaphyseal changes, mild epiphyseal involvement, rhizomelic shortening of the lower limbs with bowing of the femora and/or tibiae, coxa vara, genu varum and pear-shaped vertebrae in childhood. Epimetaphyseal changes improve with age.[1] Defects in MMP13 are the cause of metaphyseal anadysplasia type 1 (MANDP1) [MIM:602111]. Metaphyseal anadysplasia consists of an abnormal bone development characterized by severe skeletal changes that, in contrast with the progressive course of most other skeletal dysplasias, resolve spontaneously with age. Clinical characteristics are evident from the first months of life and include slight shortness of stature and a mild varus deformity of the legs. Patients attain a normal stature in adolescence and show improvement or complete resolution of varus deformity of the legs and rhizomelic micromelia.[2]

Function

[MMP13_HUMAN] Degrades collagen type I. Does not act on gelatin or casein. Could have a role in tumoral process.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Collagenase-3 (MMP-13) is a matrix metalloproteinase involved in human breast cancer pathology and in arthritic processes. The crystal structure of its C-terminal haemopexin-like domain has been solved by molecular replacement and refined to an R-value of 0.195 using data to 2.7 A resolution. This structure reveals a disk-like shape. The chain is folded into a beta-propeller structure of pseudo 4-fold symmetry, with the four propeller blades arranged around a funnel-like tunnel. This central tunnel tube harbours four ions assigned as two calcium and two chloride ions. The C-terminal domain of collagenase-3 has a similar structure to the equivalent domain of gelatinase A and fibroblast collagenase 1; however, its detailed structure and surface charge pattern has a somewhat greater similarity to the latter, in agreement with the subgrouping of MMP-13 with the collagenase subfamily of MMPs. It is proposed that several small structural differences may act together to confer the characteristic binding and cleavage specificities of collagenases for triple-helical substrates, probably in co-operation with a fitting interdomain linker.

The helping hand of collagenase-3 (MMP-13): 2.7 A crystal structure of its C-terminal haemopexin-like domain.,Gomis-Ruth FX, Gohlke U, Betz M, Knauper V, Murphy G, Lopez-Otin C, Bode W J Mol Biol. 1996 Dec 6;264(3):556-66. PMID:8969305[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Kennedy AM, Inada M, Krane SM, Christie PT, Harding B, Lopez-Otin C, Sanchez LM, Pannett AA, Dearlove A, Hartley C, Byrne MH, Reed AA, Nesbit MA, Whyte MP, Thakker RV. MMP13 mutation causes spondyloepimetaphyseal dysplasia, Missouri type (SEMD(MO). J Clin Invest. 2005 Oct;115(10):2832-42. PMID:16167086 doi:10.1172/JCI22900
  2. Lausch E, Keppler R, Hilbert K, Cormier-Daire V, Nikkel S, Nishimura G, Unger S, Spranger J, Superti-Furga A, Zabel B. Mutations in MMP9 and MMP13 determine the mode of inheritance and the clinical spectrum of metaphyseal anadysplasia. Am J Hum Genet. 2009 Aug;85(2):168-78. doi: 10.1016/j.ajhg.2009.06.014. Epub 2009, Jul 16. PMID:19615667 doi:10.1016/j.ajhg.2009.06.014
  3. Gomis-Ruth FX, Gohlke U, Betz M, Knauper V, Murphy G, Lopez-Otin C, Bode W. The helping hand of collagenase-3 (MMP-13): 2.7 A crystal structure of its C-terminal haemopexin-like domain. J Mol Biol. 1996 Dec 6;264(3):556-66. PMID:8969305 doi:http://dx.doi.org/10.1006/jmbi.1996.0661

1pex, resolution 2.70Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA