1efw: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
==Crystal structure of aspartyl-tRNA synthetase from Thermus thermophilus complexed to tRNAasp from Escherichia coli== | |||
=== | <StructureSection load='1efw' size='340' side='right' caption='[[1efw]], [[Resolution|resolution]] 3.00Å' scene=''> | ||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1efw]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli] and [http://en.wikipedia.org/wiki/Thermus_thermophilus Thermus thermophilus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1EFW OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1EFW FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=2MA:2-METHYLADENOSINE-5-MONOPHOSPHATE'>2MA</scene>, <scene name='pdbligand=4SU:4-THIOURIDINE-5-MONOPHOSPHATE'>4SU</scene>, <scene name='pdbligand=5MU:5-METHYLURIDINE+5-MONOPHOSPHATE'>5MU</scene>, <scene name='pdbligand=G7M:N7-METHYL-GUANOSINE-5-MONOPHOSPHATE'>G7M</scene>, <scene name='pdbligand=H2U:5,6-DIHYDROURIDINE-5-MONOPHOSPHATE'>H2U</scene>, <scene name='pdbligand=PSU:PSEUDOURIDINE-5-MONOPHOSPHATE'>PSU</scene>, <scene name='pdbligand=QUO:2-AMINO-7-DEAZA-(2,3-DIHYDROXY-CYCLOPENTYLAMINO)-GUANOSINE-5-MONOPHOSPHATE'>QUO</scene></td></tr> | |||
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Aspartate--tRNA_ligase Aspartate--tRNA ligase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=6.1.1.12 6.1.1.12] </span></td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1efw FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1efw OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1efw RCSB], [http://www.ebi.ac.uk/pdbsum/1efw PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ef/1efw_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The crystal structures of aspartyl-tRNA synthetase (AspRS) from Thermus thermophilus, a prokaryotic class IIb enzyme, complexed with tRNA(Asp) from either T. thermophilus or Escherichia coli reveal a potential intermediate of the recognition process. The tRNA is positioned on the enzyme such that it cannot be aminoacylated but adopts an overall conformation similar to that observed in active complexes. While the anticodon loop binds to the N-terminal domain of the enzyme in a manner similar to that of the related active complexes, its aminoacyl acceptor arm remains at the entrance of the active site, stabilized in its intermediate conformational state by non-specific interactions with the insertion and catalytic domains. The thermophilic nature of the enzyme, which manifests itself in a very low kinetic efficiency at 17 degrees C, the temperature at which the crystals were grown, is in agreement with the relative stability of this non-productive conformational state. Based on these data, a pathway for tRNA binding and recognition is proposed. | |||
An intermediate step in the recognition of tRNA(Asp) by aspartyl-tRNA synthetase.,Briand C, Poterszman A, Eiler S, Webster G, Thierry J, Moras D J Mol Biol. 2000 Jun 16;299(4):1051-60. PMID:10843857<ref>PMID:10843857</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | ==See Also== | ||
*[[Aminoacyl tRNA Synthetase|Aminoacyl tRNA Synthetase]] | *[[Aminoacyl tRNA Synthetase|Aminoacyl tRNA Synthetase]] | ||
*[[TRNA|TRNA]] | *[[TRNA|TRNA]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: Aspartate--tRNA ligase]] | [[Category: Aspartate--tRNA ligase]] | ||
[[Category: Escherichia coli]] | [[Category: Escherichia coli]] |
Revision as of 18:07, 29 September 2014
Crystal structure of aspartyl-tRNA synthetase from Thermus thermophilus complexed to tRNAasp from Escherichia coliCrystal structure of aspartyl-tRNA synthetase from Thermus thermophilus complexed to tRNAasp from Escherichia coli
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe crystal structures of aspartyl-tRNA synthetase (AspRS) from Thermus thermophilus, a prokaryotic class IIb enzyme, complexed with tRNA(Asp) from either T. thermophilus or Escherichia coli reveal a potential intermediate of the recognition process. The tRNA is positioned on the enzyme such that it cannot be aminoacylated but adopts an overall conformation similar to that observed in active complexes. While the anticodon loop binds to the N-terminal domain of the enzyme in a manner similar to that of the related active complexes, its aminoacyl acceptor arm remains at the entrance of the active site, stabilized in its intermediate conformational state by non-specific interactions with the insertion and catalytic domains. The thermophilic nature of the enzyme, which manifests itself in a very low kinetic efficiency at 17 degrees C, the temperature at which the crystals were grown, is in agreement with the relative stability of this non-productive conformational state. Based on these data, a pathway for tRNA binding and recognition is proposed. An intermediate step in the recognition of tRNA(Asp) by aspartyl-tRNA synthetase.,Briand C, Poterszman A, Eiler S, Webster G, Thierry J, Moras D J Mol Biol. 2000 Jun 16;299(4):1051-60. PMID:10843857[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|