3gil: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==Dpo4 extension ternary complex with oxoG(anti)-T(anti) pair== | ||
<StructureSection load='3gil' size='340' side='right' caption='[[3gil]], [[Resolution|resolution]] 2.71Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[3gil]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/Sulfolobus_solfataricus_p2 Sulfolobus solfataricus p2]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3GIL OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3GIL FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=DGT:2-DEOXYGUANOSINE-5-TRIPHOSPHATE'>DGT</scene><br> | |||
<tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=2DT:3-DEOXYTHYMIDINE-5-MONOPHOSPHATE'>2DT</scene>, <scene name='pdbligand=8OG:8-OXO-2-DEOXY-GUANOSINE-5-MONOPHOSPHATE'>8OG</scene></td></tr> | |||
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2asd|2asd]], [[2asj|2asj]], [[2asl|2asl]], [[3gii|3gii]], [[3gij|3gij]], [[3gik|3gik]], [[3gim|3gim]]</td></tr> | |||
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">dbh, dpo4, SSO2448 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=273057 Sulfolobus solfataricus P2])</td></tr> | |||
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/DNA-directed_DNA_polymerase DNA-directed DNA polymerase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.7.7 2.7.7.7] </span></td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3gil FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3gil OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3gil RCSB], [http://www.ebi.ac.uk/pdbsum/3gil PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/gi/3gil_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
7,8-Dihydro-8-oxoguanine (oxoG), the predominant oxidative DNA damage lesion, is processed differently by high-fidelity and Y-family lesion bypass polymerases. Although high-fidelity polymerases extend predominantly from an A base opposite an oxoG, the Y-family polymerases Dpo4 and human Pol eta preferentially extend from the oxoG*C base pair. We have determined crystal structures of extension Dpo4 ternary complexes with oxoG opposite C, A, G, or T and the next nascent base pair. We demonstrate that neither template backbone nor the architecture of the active site is perturbed by the oxoG(anti)*C and oxoG*A pairs. However, the latter manifest conformational heterogeneity, adopting both oxoG(syn)*A(anti) and oxoG(anti)*A(syn) alignment. Hence, the observed reduced primer extension from the dynamically flexible 3'-terminal primer base A is explained. Because of homology between Dpo4 and Pol eta, such a dynamic screening mechanism might be utilized by Dpo4 and Pol eta to regulate error-free versus error-prone bypass of oxoG and other lesions. | |||
Impact of conformational heterogeneity of OxoG lesions and their pairing partners on bypass fidelity by Y family polymerases.,Rechkoblit O, Malinina L, Cheng Y, Geacintov NE, Broyde S, Patel DJ Structure. 2009 May 13;17(5):725-36. PMID:19446528<ref>PMID:19446528</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | ==See Also== | ||
*[[DNA polymerase|DNA polymerase]] | *[[DNA polymerase|DNA polymerase]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: DNA-directed DNA polymerase]] | [[Category: DNA-directed DNA polymerase]] | ||
[[Category: Sulfolobus solfataricus p2]] | [[Category: Sulfolobus solfataricus p2]] |
Revision as of 14:16, 29 September 2014
Dpo4 extension ternary complex with oxoG(anti)-T(anti) pairDpo4 extension ternary complex with oxoG(anti)-T(anti) pair
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMed7,8-Dihydro-8-oxoguanine (oxoG), the predominant oxidative DNA damage lesion, is processed differently by high-fidelity and Y-family lesion bypass polymerases. Although high-fidelity polymerases extend predominantly from an A base opposite an oxoG, the Y-family polymerases Dpo4 and human Pol eta preferentially extend from the oxoG*C base pair. We have determined crystal structures of extension Dpo4 ternary complexes with oxoG opposite C, A, G, or T and the next nascent base pair. We demonstrate that neither template backbone nor the architecture of the active site is perturbed by the oxoG(anti)*C and oxoG*A pairs. However, the latter manifest conformational heterogeneity, adopting both oxoG(syn)*A(anti) and oxoG(anti)*A(syn) alignment. Hence, the observed reduced primer extension from the dynamically flexible 3'-terminal primer base A is explained. Because of homology between Dpo4 and Pol eta, such a dynamic screening mechanism might be utilized by Dpo4 and Pol eta to regulate error-free versus error-prone bypass of oxoG and other lesions. Impact of conformational heterogeneity of OxoG lesions and their pairing partners on bypass fidelity by Y family polymerases.,Rechkoblit O, Malinina L, Cheng Y, Geacintov NE, Broyde S, Patel DJ Structure. 2009 May 13;17(5):725-36. PMID:19446528[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|
Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)
OCA- DNA-directed DNA polymerase
- Sulfolobus solfataricus p2
- Malinina, L.
- Patel, D J.
- Rechkoblit, O.
- 8-oxoguanine
- Dna damage
- Dna polymerase
- Dna repair
- Dna replication
- Dna-binding
- Dna-directed dna polymerase
- Lesion bypass
- Magnesium
- Metal-binding
- Mutator protein
- Nucleotidyltransferase
- Transferase
- Transferase-dna complex
- Y-family