3e0d: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==Insights into the Replisome from the Crystral Structure of the Ternary Complex of the Eubacterial DNA Polymerase III alpha-subunit== | ||
<StructureSection load='3e0d' size='340' side='right' caption='[[3e0d]], [[Resolution|resolution]] 4.60Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[3e0d]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/Thermus_aquaticus Thermus aquaticus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3E0D OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3E0D FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=DTP:2-DEOXYADENOSINE+5-TRIPHOSPHATE'>DTP</scene><br> | |||
<tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=DOC:2,3-DIDEOXYCYTIDINE-5-MONOPHOSPHATE'>DOC</scene></td></tr> | |||
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">dnaE ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=271 Thermus aquaticus])</td></tr> | |||
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/DNA-directed_DNA_polymerase DNA-directed DNA polymerase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.7.7 2.7.7.7] </span></td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3e0d FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3e0d OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3e0d RCSB], [http://www.ebi.ac.uk/pdbsum/3e0d PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/e0/3e0d_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The crystal structure of the catalytic alpha-subunit of the DNA polymerase III (Pol IIIalpha) holoenzyme bound to primer-template DNA and an incoming deoxy-nucleoside 5'-triphosphate has been determined at 4.6-A resolution. The polymerase interacts with the sugar-phosphate backbone of the DNA across its minor groove, which is made possible by significant movements of the thumb, finger, and beta-binding domains relative to their orientations in the unliganded polymerase structure. Additionally, the DNA and incoming nucleotide are bound to the active site of Pol IIIalpha nearly identically as they are in their complex with DNA polymerase beta, thereby proving that the eubacterial replicating polymerase, but not the eukaryotic replicating polymerase, is homologous to DNA polymerase beta. Finally, superimposing a recent structure of the clamp bound to DNA on this Pol IIIalpha complex with DNA places a loop of the beta-binding domain into the appropriate clamp cleft and supports a mechanism of polymerase switching. | |||
Insights into the replisome from the structure of a ternary complex of the DNA polymerase III alpha-subunit.,Wing RA, Bailey S, Steitz TA J Mol Biol. 2008 Oct 17;382(4):859-69. Epub 2008 Jul 27. PMID:18691598<ref>PMID:18691598</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | ==See Also== | ||
*[[Alpha Subunit of Thermus aquaticus DNA Polymerase III|Alpha Subunit of Thermus aquaticus DNA Polymerase III]] | |||
*[[DNA polymerase|DNA polymerase]] | *[[DNA polymerase|DNA polymerase]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: DNA-directed DNA polymerase]] | [[Category: DNA-directed DNA polymerase]] | ||
[[Category: Thermus aquaticus]] | [[Category: Thermus aquaticus]] |
Revision as of 13:56, 29 September 2014
Insights into the Replisome from the Crystral Structure of the Ternary Complex of the Eubacterial DNA Polymerase III alpha-subunitInsights into the Replisome from the Crystral Structure of the Ternary Complex of the Eubacterial DNA Polymerase III alpha-subunit
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe crystal structure of the catalytic alpha-subunit of the DNA polymerase III (Pol IIIalpha) holoenzyme bound to primer-template DNA and an incoming deoxy-nucleoside 5'-triphosphate has been determined at 4.6-A resolution. The polymerase interacts with the sugar-phosphate backbone of the DNA across its minor groove, which is made possible by significant movements of the thumb, finger, and beta-binding domains relative to their orientations in the unliganded polymerase structure. Additionally, the DNA and incoming nucleotide are bound to the active site of Pol IIIalpha nearly identically as they are in their complex with DNA polymerase beta, thereby proving that the eubacterial replicating polymerase, but not the eukaryotic replicating polymerase, is homologous to DNA polymerase beta. Finally, superimposing a recent structure of the clamp bound to DNA on this Pol IIIalpha complex with DNA places a loop of the beta-binding domain into the appropriate clamp cleft and supports a mechanism of polymerase switching. Insights into the replisome from the structure of a ternary complex of the DNA polymerase III alpha-subunit.,Wing RA, Bailey S, Steitz TA J Mol Biol. 2008 Oct 17;382(4):859-69. Epub 2008 Jul 27. PMID:18691598[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|