2ago: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
[[Image:2ago.png|left|200px]]
==Fidelity of Dpo4: effect of metal ions, nucleotide selection and pyrophosphorolysis==
<StructureSection load='2ago' size='340' side='right' caption='[[2ago]], [[Resolution|resolution]] 2.85&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[2ago]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/Sulfolobus_solfataricus Sulfolobus solfataricus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2AGO OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2AGO FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=POP:PYROPHOSPHATE+2-'>POP</scene><br>
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">dbh, dpo4 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=2287 Sulfolobus solfataricus])</td></tr>
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/DNA-directed_DNA_polymerase DNA-directed DNA polymerase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.7.7 2.7.7.7] </span></td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2ago FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2ago OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2ago RCSB], [http://www.ebi.ac.uk/pdbsum/2ago PDBsum]</span></td></tr>
<table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ag/2ago_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
We report the crystal structures of a translesion DNA polymerase, Dpo4, complexed with a matched or mismatched incoming nucleotide and with a pyrophosphate product after misincorporation. These structures suggest two mechanisms by which Dpo4 may reject a wrong incoming nucleotide with its preformed and open active site. First, a mismatched replicating base pair leads to poor base stacking and alignment of the metal ions and as a consequence, inhibits incorporation. By replacing Mg2+ with Mn2+, which has a relaxed coordination requirement and tolerates misalignment, the catalytic efficiency of misincorporation increases dramatically. Mn2+ also enhances translesion synthesis by Dpo4. Subtle conformational changes that lead to the proper metal ion coordination may, therefore, be a key step in catalysis. Second, the slow release of pyrophosphate may increase the fidelity of Dpo4 by stalling mispaired primer extension and promoting pyrophosphorolysis that reverses the polymerization reaction. Indeed, Dpo4 has robust pyrophosphorolysis activity and degrades the primer strand in the presence of pyrophosphate. The correct incoming nucleotide allows DNA synthesis to overcome pyrophosphorolysis, but an incorrect incoming nucleotide does not.


{{STRUCTURE_2ago|  PDB=2ago  |  SCENE=  }}
Fidelity of Dpo4: effect of metal ions, nucleotide selection and pyrophosphorolysis.,Vaisman A, Ling H, Woodgate R, Yang W EMBO J. 2005 Sep 7;24(17):2957-67. Epub 2005 Aug 18. PMID:16107880<ref>PMID:16107880</ref>


===Fidelity of Dpo4: effect of metal ions, nucleotide selection and pyrophosphorolysis===
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
{{ABSTRACT_PUBMED_16107880}}
 
==About this Structure==
[[2ago]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/Sulfolobus_solfataricus Sulfolobus solfataricus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2AGO OCA].


==See Also==
==See Also==
*[[DNA polymerase|DNA polymerase]]
*[[DNA polymerase|DNA polymerase]]
 
== References ==
==Reference==
<references/>
<ref group="xtra">PMID:016107880</ref><references group="xtra"/>
__TOC__
</StructureSection>
[[Category: DNA-directed DNA polymerase]]
[[Category: DNA-directed DNA polymerase]]
[[Category: Sulfolobus solfataricus]]
[[Category: Sulfolobus solfataricus]]

Revision as of 08:22, 29 September 2014

Fidelity of Dpo4: effect of metal ions, nucleotide selection and pyrophosphorolysisFidelity of Dpo4: effect of metal ions, nucleotide selection and pyrophosphorolysis

Structural highlights

2ago is a 3 chain structure with sequence from Sulfolobus solfataricus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, ,
Gene:dbh, dpo4 (Sulfolobus solfataricus)
Activity:DNA-directed DNA polymerase, with EC number 2.7.7.7
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

We report the crystal structures of a translesion DNA polymerase, Dpo4, complexed with a matched or mismatched incoming nucleotide and with a pyrophosphate product after misincorporation. These structures suggest two mechanisms by which Dpo4 may reject a wrong incoming nucleotide with its preformed and open active site. First, a mismatched replicating base pair leads to poor base stacking and alignment of the metal ions and as a consequence, inhibits incorporation. By replacing Mg2+ with Mn2+, which has a relaxed coordination requirement and tolerates misalignment, the catalytic efficiency of misincorporation increases dramatically. Mn2+ also enhances translesion synthesis by Dpo4. Subtle conformational changes that lead to the proper metal ion coordination may, therefore, be a key step in catalysis. Second, the slow release of pyrophosphate may increase the fidelity of Dpo4 by stalling mispaired primer extension and promoting pyrophosphorolysis that reverses the polymerization reaction. Indeed, Dpo4 has robust pyrophosphorolysis activity and degrades the primer strand in the presence of pyrophosphate. The correct incoming nucleotide allows DNA synthesis to overcome pyrophosphorolysis, but an incorrect incoming nucleotide does not.

Fidelity of Dpo4: effect of metal ions, nucleotide selection and pyrophosphorolysis.,Vaisman A, Ling H, Woodgate R, Yang W EMBO J. 2005 Sep 7;24(17):2957-67. Epub 2005 Aug 18. PMID:16107880[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Vaisman A, Ling H, Woodgate R, Yang W. Fidelity of Dpo4: effect of metal ions, nucleotide selection and pyrophosphorolysis. EMBO J. 2005 Sep 7;24(17):2957-67. Epub 2005 Aug 18. PMID:16107880

2ago, resolution 2.85Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA