2fxd: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==X-ray crystal structure of HIV-1 protease IRM mutant complexed with atazanavir (BMS-232632)== | ||
<StructureSection load='2fxd' size='340' side='right' caption='[[2fxd]], [[Resolution|resolution]] 1.60Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[2fxd]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Human_immunodeficiency_virus_1 Human immunodeficiency virus 1]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2FXD OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2FXD FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=DR7:(3S,8S,9S,12S)-3,12-BIS(1,1-DIMETHYLETHYL)-8-HYDROXY-4,11-DIOXO-9-(PHENYLMETHYL)-6-[[4-(2-PYRIDINYL)PHENYL]METHYL]-2,5,6,10,13-PENTAAZATETRADECANEDIOIC+ACID+DIMETHYL+ESTER'>DR7</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene><br> | |||
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2fxe|2fxe]]</td></tr> | |||
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">POL ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=11676 Human immunodeficiency virus 1])</td></tr> | |||
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/HIV-1_retropepsin HIV-1 retropepsin], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.4.23.16 3.4.23.16] </span></td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2fxd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2fxd OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2fxd RCSB], [http://www.ebi.ac.uk/pdbsum/2fxd PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/fx/2fxd_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Atazanavir, which is marketed as REYATAZ, is the first human immunodeficiency virus type 1 (HIV-1) protease inhibitor approved for once-daily administration. As previously reported, atazanavir offers improved inhibitory profiles against several common variants of HIV-1 protease over those of the other peptidomimetic inhibitors currently on the market. This work describes the X-ray crystal structures of complexes of atazanavir with two HIV-1 protease variants, namely, (i) an enzyme optimized for resistance to autolysis and oxidation, referred to as the cleavage-resistant mutant (CRM); and (ii) the M46I/V82F/I84V/L90M mutant of the CRM enzyme, which is resistant to all approved HIV-1 protease inhibitors, referred to as the inhibitor-resistant mutant. In these two complexes, atazanavir adopts distinct bound conformations in response to the V82F substitution, which may explain why this substitution, at least in isolation, has yet to be selected in vitro or in the clinic. Because of its nearly symmetrical chemical structure, atazanavir is able to make several analogous contacts with each monomer of the biological dimer. | |||
X-ray crystal structures of human immunodeficiency virus type 1 protease mutants complexed with atazanavir.,Klei HE, Kish K, Lin PF, Guo Q, Friborg J, Rose RE, Zhang Y, Goldfarb V, Langley DR, Wittekind M, Sheriff S J Virol. 2007 Sep;81(17):9525-35. Epub 2007 May 30. PMID:17537865<ref>PMID:17537865</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | ==See Also== | ||
*[[Virus protease|Virus protease]] | *[[Virus protease|Virus protease]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: HIV-1 retropepsin]] | [[Category: HIV-1 retropepsin]] | ||
[[Category: Human immunodeficiency virus 1]] | [[Category: Human immunodeficiency virus 1]] |
Revision as of 07:52, 29 September 2014
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedAtazanavir, which is marketed as REYATAZ, is the first human immunodeficiency virus type 1 (HIV-1) protease inhibitor approved for once-daily administration. As previously reported, atazanavir offers improved inhibitory profiles against several common variants of HIV-1 protease over those of the other peptidomimetic inhibitors currently on the market. This work describes the X-ray crystal structures of complexes of atazanavir with two HIV-1 protease variants, namely, (i) an enzyme optimized for resistance to autolysis and oxidation, referred to as the cleavage-resistant mutant (CRM); and (ii) the M46I/V82F/I84V/L90M mutant of the CRM enzyme, which is resistant to all approved HIV-1 protease inhibitors, referred to as the inhibitor-resistant mutant. In these two complexes, atazanavir adopts distinct bound conformations in response to the V82F substitution, which may explain why this substitution, at least in isolation, has yet to be selected in vitro or in the clinic. Because of its nearly symmetrical chemical structure, atazanavir is able to make several analogous contacts with each monomer of the biological dimer. X-ray crystal structures of human immunodeficiency virus type 1 protease mutants complexed with atazanavir.,Klei HE, Kish K, Lin PF, Guo Q, Friborg J, Rose RE, Zhang Y, Goldfarb V, Langley DR, Wittekind M, Sheriff S J Virol. 2007 Sep;81(17):9525-35. Epub 2007 May 30. PMID:17537865[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|