2aio: Difference between revisions

From Proteopedia
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
[[Image:2aio.png|left|200px]]
==Metallo beta lactamase L1 from Stenotrophomonas maltophilia complexed with hydrolyzed moxalactam==
<StructureSection load='2aio' size='340' side='right' caption='[[2aio]], [[Resolution|resolution]] 1.70&Aring;' scene=''>
== Structural highlights ==
<table><tr><td colspan='2'>[[2aio]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Stenotrophomonas_maltophilia Stenotrophomonas maltophilia]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2AIO OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2AIO FirstGlance]. <br>
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MX1:(2R)-2-((R)-CARBOXY{[CARBOXY(4-HYDROXYPHENYL)ACETYL]AMINO}METHOXYMETHYL)-5-METHYLENE-5,6-DIHYDRO-2H-1,3-OXAZINE-4-CARBOXYLIC+ACID'>MX1</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene><br>
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1sml|1sml]]</td></tr>
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">blaL1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=40324 Stenotrophomonas maltophilia])</td></tr>
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Beta-lactamase Beta-lactamase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.5.2.6 3.5.2.6] </span></td></tr>
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2aio FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2aio OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2aio RCSB], [http://www.ebi.ac.uk/pdbsum/2aio PDBsum]</span></td></tr>
<table>
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
Check<jmol>
  <jmolCheckbox>
    <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ai/2aio_consurf.spt"</scriptWhenChecked>
    <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
    <text>to colour the structure by Evolutionary Conservation</text>
  </jmolCheckbox>
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
<div style="clear:both"></div>
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
Metallo-beta-lactamases are zinc-dependent enzymes responsible for resistance to beta-lactam antibiotics in a variety of host bacteria, usually Gram-negative species that act as opportunist pathogens. They hydrolyze all classes of beta-lactam antibiotics, including carbapenems, and escape the action of available beta-lactamase inhibitors. Efforts to develop effective inhibitors have been hampered by the lack of structural information regarding how these enzymes recognize and turn over beta-lactam substrates. We report here the crystal structure of the Stenotrophomonas maltophilia L1 enzyme in complex with the hydrolysis product of the 7alpha-methoxyoxacephem, moxalactam. The on-enzyme complex is a 3'-exo-methylene species generated by elimination of the 1-methyltetrazolyl-5-thiolate anion from the 3'-methyl group. Moxalactam binding to L1 involves direct interaction of the two active site zinc ions with the beta-lactam amide and C4 carboxylate, groups that are common to all beta-lactam substrates. The 7beta-[(4-hydroxyphenyl)malonyl]-amino substituent makes limited hydrophobic and hydrogen bonding contacts with the active site groove. The mode of binding provides strong evidence that a water molecule situated between the two metal ions is the most likely nucleophile in the hydrolytic reaction. These data suggest a reaction mechanism for metallo-beta-lactamases in which both metal ions contribute to catalysis by activating the bridging water/hydroxide nucleophile, polarizing the substrate amide bond for attack and stabilizing anionic nitrogen intermediates. The structure illustrates how a binuclear zinc site confers upon metallo-beta-lactamases the ability both to recognize and efficiently hydrolyze a wide variety of beta-lactam substrates.


{{STRUCTURE_2aio|  PDB=2aio  |  SCENE=  }}
Antibiotic recognition by binuclear metallo-beta-lactamases revealed by X-ray crystallography.,Spencer J, Read J, Sessions RB, Howell S, Blackburn GM, Gamblin SJ J Am Chem Soc. 2005 Oct 19;127(41):14439-44. PMID:16218639<ref>PMID:16218639</ref>


===Metallo beta lactamase L1 from Stenotrophomonas maltophilia complexed with hydrolyzed moxalactam===
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 
</div>
{{ABSTRACT_PUBMED_16218639}}
 
==About this Structure==
[[2aio]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Stenotrophomonas_maltophilia Stenotrophomonas maltophilia]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2AIO OCA].


==See Also==
==See Also==
*[[Beta-lactamase|Beta-lactamase]]
*[[Beta-lactamase|Beta-lactamase]]
 
== References ==
==Reference==
<references/>
<ref group="xtra">PMID:016218639</ref><references group="xtra"/>
__TOC__
</StructureSection>
[[Category: Beta-lactamase]]
[[Category: Beta-lactamase]]
[[Category: Stenotrophomonas maltophilia]]
[[Category: Stenotrophomonas maltophilia]]

Revision as of 06:38, 29 September 2014

Metallo beta lactamase L1 from Stenotrophomonas maltophilia complexed with hydrolyzed moxalactamMetallo beta lactamase L1 from Stenotrophomonas maltophilia complexed with hydrolyzed moxalactam

Structural highlights

2aio is a 1 chain structure with sequence from Stenotrophomonas maltophilia. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, ,
Related:1sml
Gene:blaL1 (Stenotrophomonas maltophilia)
Activity:Beta-lactamase, with EC number 3.5.2.6
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Metallo-beta-lactamases are zinc-dependent enzymes responsible for resistance to beta-lactam antibiotics in a variety of host bacteria, usually Gram-negative species that act as opportunist pathogens. They hydrolyze all classes of beta-lactam antibiotics, including carbapenems, and escape the action of available beta-lactamase inhibitors. Efforts to develop effective inhibitors have been hampered by the lack of structural information regarding how these enzymes recognize and turn over beta-lactam substrates. We report here the crystal structure of the Stenotrophomonas maltophilia L1 enzyme in complex with the hydrolysis product of the 7alpha-methoxyoxacephem, moxalactam. The on-enzyme complex is a 3'-exo-methylene species generated by elimination of the 1-methyltetrazolyl-5-thiolate anion from the 3'-methyl group. Moxalactam binding to L1 involves direct interaction of the two active site zinc ions with the beta-lactam amide and C4 carboxylate, groups that are common to all beta-lactam substrates. The 7beta-[(4-hydroxyphenyl)malonyl]-amino substituent makes limited hydrophobic and hydrogen bonding contacts with the active site groove. The mode of binding provides strong evidence that a water molecule situated between the two metal ions is the most likely nucleophile in the hydrolytic reaction. These data suggest a reaction mechanism for metallo-beta-lactamases in which both metal ions contribute to catalysis by activating the bridging water/hydroxide nucleophile, polarizing the substrate amide bond for attack and stabilizing anionic nitrogen intermediates. The structure illustrates how a binuclear zinc site confers upon metallo-beta-lactamases the ability both to recognize and efficiently hydrolyze a wide variety of beta-lactam substrates.

Antibiotic recognition by binuclear metallo-beta-lactamases revealed by X-ray crystallography.,Spencer J, Read J, Sessions RB, Howell S, Blackburn GM, Gamblin SJ J Am Chem Soc. 2005 Oct 19;127(41):14439-44. PMID:16218639[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Spencer J, Read J, Sessions RB, Howell S, Blackburn GM, Gamblin SJ. Antibiotic recognition by binuclear metallo-beta-lactamases revealed by X-ray crystallography. J Am Chem Soc. 2005 Oct 19;127(41):14439-44. PMID:16218639 doi:10.1021/ja0536062

2aio, resolution 1.70Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA