1r81: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==Glycosyltransferase A in complex with 3-amino-acceptor analog inhibitor and uridine diphosphate-N-acetyl-galactose== | ||
<StructureSection load='1r81' size='340' side='right' caption='[[1r81]], [[Resolution|resolution]] 1.75Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1r81]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1R81 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1R81 FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=HG:MERCURY+(II)+ION'>HG</scene>, <scene name='pdbligand=UD2:URIDINE-DIPHOSPHATE-N-ACETYLGALACTOSAMINE'>UD2</scene>, <scene name='pdbligand=AIG:4-AMINO-2-HEXYLOXY-6-HYDROXYMETHYL-TETRAHYDRO-PYRAN-3,5-DIOL'>AIG</scene>, <scene name='pdbligand=FUC:ALPHA-L-FUCOSE'>FUC</scene><br> | |||
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1r7t|1r7t]], [[1r7u|1r7u]], [[1r7v|1r7v]], [[1r7x|1r7x]], [[1r7y|1r7y]], [[1r80|1r80]], [[1r82|1r82]]</td></tr> | |||
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glycoprotein-fucosylgalactoside_alpha-N-acetylgalactosaminyltransferase Glycoprotein-fucosylgalactoside alpha-N-acetylgalactosaminyltransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.4.1.40 2.4.1.40] </span></td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1r81 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1r81 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1r81 RCSB], [http://www.ebi.ac.uk/pdbsum/1r81 PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/r8/1r81_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
Human ABO(H) blood group glycosyltransferases GTA and GTB catalyze the final monosaccharide addition in the biosynthesis of the human A and B blood group antigens. GTA and GTB utilize a common acceptor, the H antigen disaccharide alpha-l-Fucp-(1-->2)-beta-d-Galp-OR, but different donors, where GTA transfers GalNAc from UDP-GalNAc and GTB transfers Gal from UDP-Gal. GTA and GTB are two of the most homologous enzymes known to transfer different donors and differ in only 4 amino acid residues, but one in particular (Leu/Met-266) has been shown to dominate the selection between donor sugars. The structures of the A and B glycosyltransferases have been determined to high resolution in complex with two inhibitory acceptor analogs alpha-l-Fucp(1-->2)-beta-d-(3-deoxy)-Galp-OR and alpha-l-Fucp-(1-->2)-beta-d-(3-amino)-Galp-OR, in which the 3-hydroxyl moiety of the Gal ring has been replaced by hydrogen or an amino group, respectively. Remarkably, although the 3-deoxy inhibitor occupies the same conformation and position observed for the native H antigen in GTA and GTB, the 3-amino analog is recognized differently by the two enzymes. The 3-amino substitution introduces a novel intramolecular hydrogen bond between O2' on Fuc and N3' on Gal, which alters the minimum-energy conformation of the inhibitor. In the absence of UDP, the 3-amino analog can be accommodated by either GTA or GTB with the l-Fuc residue partially occupying the vacant UDP binding site. However, in the presence of UDP, the analog is forced to abandon the intramolecular hydrogen bond, and the l-Fuc residue is shifted to a less ordered conformation. Further, the residue Leu/Met-266 that was thought important only in distinguishing between donor substrates is observed to interact differently with the 3-amino acceptor analog in GTA and GTB. These observations explain why the 3-deoxy analog acts as a competitive inhibitor of the glycosyltransferase reaction, whereas the 3-amino analog displays complex modes of inhibition. | |||
The influence of an intramolecular hydrogen bond in differential recognition of inhibitory acceptor analogs by human ABO(H) blood group A and B glycosyltransferases.,Nguyen HP, Seto NO, Cai Y, Leinala EK, Borisova SN, Palcic MM, Evans SV J Biol Chem. 2003 Dec 5;278(49):49191-5. Epub 2003 Sep 11. PMID:12972418<ref>PMID:12972418</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | ==See Also== | ||
*[[Glycosyltransferase|Glycosyltransferase]] | *[[Glycosyltransferase|Glycosyltransferase]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: Glycoprotein-fucosylgalactoside alpha-N-acetylgalactosaminyltransferase]] | [[Category: Glycoprotein-fucosylgalactoside alpha-N-acetylgalactosaminyltransferase]] | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] |