1u7x: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==crystal structure of a mutant M. jannashii tyrosyl-tRNA synthetase specific for O-methyl-tyrosine== | ||
<StructureSection load='1u7x' size='340' side='right' caption='[[1u7x]], [[Resolution|resolution]] 3.00Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1u7x]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Methanocaldococcus_jannaschii Methanocaldococcus jannaschii]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1U7X OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1U7X FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=K:POTASSIUM+ION'>K</scene><br> | |||
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1u7d|1u7d]]</td></tr> | |||
<tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">tyrS ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=2190 Methanocaldococcus jannaschii])</td></tr> | |||
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Tyrosine--tRNA_ligase Tyrosine--tRNA ligase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=6.1.1.1 6.1.1.1] </span></td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1u7x FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1u7x OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1u7x RCSB], [http://www.ebi.ac.uk/pdbsum/1u7x PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/u7/1u7x_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The Methanococcus jannaschii tRNA(Tyr)/TyrRS pair has been engineered to incorporate unnatural amino acids into proteins in E. coli. To reveal the structural basis for the altered specificity of mutant TyrRS for O-methyl-L-tyrosine (OMeTyr), the crystal structures for the apo wild-type and mutant M. jannaschii TyrRS were determined at 2.66 and 3.0 A, respectively, for comparison with the published structure of TyrRS complexed with tRNA(Tyr) and substrate tyrosine. A large conformational change was found for the anticodon recognition loop 257-263 of wild-type TyrRS upon tRNA binding in order to facilitate recognition of G34 of the anticodon loop through pi-stacking and hydrogen bonding interactions. Loop 133-143, which is close to the tRNA acceptor stem-binding site, also appears to be stabilized by interaction with the tRNA(Tyr). Binding of the substrate tyrosine results in subtle and cooperative movements of the side chains within the tyrosine-binding pocket. In the OMeTyr-specific mutant synthetase structure, the signature motif KMSKS loop and acceptor stem-binding loop 133-143 were surprisingly ordered in the absence of bound ATP and tRNA. The active-site mutations result in altered hydrogen bonding and steric interactions which favor binding of OMeTyr over L-tyrosine. The structure of the mutant and wild-type TyrRS now provide a basis for generating new active-site libraries to evolve synthetases specific for other unnatural amino acids. | |||
Crystal structures of apo wild-type M. jannaschii tyrosyl-tRNA synthetase (TyrRS) and an engineered TyrRS specific for O-methyl-L-tyrosine.,Zhang Y, Wang L, Schultz PG, Wilson IA Protein Sci. 2005 May;14(5):1340-9. PMID:15840835<ref>PMID:15840835</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | ==See Also== | ||
*[[Aminoacyl tRNA Synthetase|Aminoacyl tRNA Synthetase]] | *[[Aminoacyl tRNA Synthetase|Aminoacyl tRNA Synthetase]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: Methanocaldococcus jannaschii]] | [[Category: Methanocaldococcus jannaschii]] | ||
[[Category: Tyrosine--tRNA ligase]] | [[Category: Tyrosine--tRNA ligase]] |
Revision as of 02:36, 29 September 2014
crystal structure of a mutant M. jannashii tyrosyl-tRNA synthetase specific for O-methyl-tyrosinecrystal structure of a mutant M. jannashii tyrosyl-tRNA synthetase specific for O-methyl-tyrosine
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe Methanococcus jannaschii tRNA(Tyr)/TyrRS pair has been engineered to incorporate unnatural amino acids into proteins in E. coli. To reveal the structural basis for the altered specificity of mutant TyrRS for O-methyl-L-tyrosine (OMeTyr), the crystal structures for the apo wild-type and mutant M. jannaschii TyrRS were determined at 2.66 and 3.0 A, respectively, for comparison with the published structure of TyrRS complexed with tRNA(Tyr) and substrate tyrosine. A large conformational change was found for the anticodon recognition loop 257-263 of wild-type TyrRS upon tRNA binding in order to facilitate recognition of G34 of the anticodon loop through pi-stacking and hydrogen bonding interactions. Loop 133-143, which is close to the tRNA acceptor stem-binding site, also appears to be stabilized by interaction with the tRNA(Tyr). Binding of the substrate tyrosine results in subtle and cooperative movements of the side chains within the tyrosine-binding pocket. In the OMeTyr-specific mutant synthetase structure, the signature motif KMSKS loop and acceptor stem-binding loop 133-143 were surprisingly ordered in the absence of bound ATP and tRNA. The active-site mutations result in altered hydrogen bonding and steric interactions which favor binding of OMeTyr over L-tyrosine. The structure of the mutant and wild-type TyrRS now provide a basis for generating new active-site libraries to evolve synthetases specific for other unnatural amino acids. Crystal structures of apo wild-type M. jannaschii tyrosyl-tRNA synthetase (TyrRS) and an engineered TyrRS specific for O-methyl-L-tyrosine.,Zhang Y, Wang L, Schultz PG, Wilson IA Protein Sci. 2005 May;14(5):1340-9. PMID:15840835[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|