1x24: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==Prl-1 (ptp4a)== | ||
<StructureSection load='1x24' size='340' side='right' caption='[[1x24]], [[Resolution|resolution]] 3.20Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1x24]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1X24 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1X24 FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Protein-tyrosine-phosphatase Protein-tyrosine-phosphatase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.1.3.48 3.1.3.48] </span></td></tr> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1x24 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1x24 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1x24 RCSB], [http://www.ebi.ac.uk/pdbsum/1x24 PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/x2/1x24_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The PRL (phosphatase of regenerating liver) phosphatases constitute a novel class of small, prenylated phosphatases that are implicated in promoting cell growth, differentiation, and tumor invasion, and represent attractive targets for anticancer therapy. Here we describe the crystal structures of native PRL-1 as well as the catalytically inactive mutant PRL-1/C104S in complex with sulfate. PRL-1 exists as a trimer in the crystalline state, burying 1140 A2 of accessible surface area at each dimer interface. Trimerization creates a large, bipartite membrane-binding surface in which the exposed C-terminal basic residues could cooperate with the adjacent prenylation group to anchor PRL-1 on the acidic inner membrane. Structural and kinetic analyses place PRL-1 in the family of dual specificity phopsphatases with closest structural similarity to the Cdc14 phosphatase and provide a molecular basis for catalytic activation of the PRL phosphatases. Finally, native PRL-1 is crystallized in an oxidized form in which a disulfide is formed between the active site Cys104 and a neighboring residue Cys49, which blocks both substrate binding and catalysis. Biochemical studies in solution and in the cell support a potential regulatory role of this intramolecular disulfide bond formation in response to reactive oxygen species such as H2O2. | |||
Structure and biochemical properties of PRL-1, a phosphatase implicated in cell growth, differentiation, and tumor invasion.,Sun JP, Wang WQ, Yang H, Liu S, Liang F, Fedorov AA, Almo SC, Zhang ZY Biochemistry. 2005 Sep 13;44(36):12009-21. PMID:16142898<ref>PMID:16142898</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | ==See Also== | ||
*[[Dual specificity phosphatase|Dual specificity phosphatase]] | |||
*[[Tyrosine phosphatase|Tyrosine phosphatase]] | *[[Tyrosine phosphatase|Tyrosine phosphatase]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: Protein-tyrosine-phosphatase]] | [[Category: Protein-tyrosine-phosphatase]] | ||
[[Category: Rattus norvegicus]] | [[Category: Rattus norvegicus]] |
Revision as of 02:28, 29 September 2014
Prl-1 (ptp4a)Prl-1 (ptp4a)
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe PRL (phosphatase of regenerating liver) phosphatases constitute a novel class of small, prenylated phosphatases that are implicated in promoting cell growth, differentiation, and tumor invasion, and represent attractive targets for anticancer therapy. Here we describe the crystal structures of native PRL-1 as well as the catalytically inactive mutant PRL-1/C104S in complex with sulfate. PRL-1 exists as a trimer in the crystalline state, burying 1140 A2 of accessible surface area at each dimer interface. Trimerization creates a large, bipartite membrane-binding surface in which the exposed C-terminal basic residues could cooperate with the adjacent prenylation group to anchor PRL-1 on the acidic inner membrane. Structural and kinetic analyses place PRL-1 in the family of dual specificity phopsphatases with closest structural similarity to the Cdc14 phosphatase and provide a molecular basis for catalytic activation of the PRL phosphatases. Finally, native PRL-1 is crystallized in an oxidized form in which a disulfide is formed between the active site Cys104 and a neighboring residue Cys49, which blocks both substrate binding and catalysis. Biochemical studies in solution and in the cell support a potential regulatory role of this intramolecular disulfide bond formation in response to reactive oxygen species such as H2O2. Structure and biochemical properties of PRL-1, a phosphatase implicated in cell growth, differentiation, and tumor invasion.,Sun JP, Wang WQ, Yang H, Liu S, Liang F, Fedorov AA, Almo SC, Zhang ZY Biochemistry. 2005 Sep 13;44(36):12009-21. PMID:16142898[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|