1qdc: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image: | ==MAN(APLHA1-6)MAN(ALPHA1-O)METHYL CONCANAVALIN A COMPLEX== | ||
<StructureSection load='1qdc' size='340' side='right' caption='[[1qdc]], [[Resolution|resolution]] 2.00Å' scene=''> | |||
== Structural highlights == | |||
<table><tr><td colspan='2'>[[1qdc]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Canavalia_ensiformis Canavalia ensiformis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1QDC OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1QDC FirstGlance]. <br> | |||
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=MMA:O1-METHYL-MANNOSE'>MMA</scene><br> | |||
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1qdc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1qdc OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1qdc RCSB], [http://www.ebi.ac.uk/pdbsum/1qdc PDBsum]</span></td></tr> | |||
<table> | |||
== Evolutionary Conservation == | |||
[[Image:Consurf_key_small.gif|200px|right]] | |||
Check<jmol> | |||
<jmolCheckbox> | |||
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/qd/1qdc_consurf.spt"</scriptWhenChecked> | |||
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | |||
<text>to colour the structure by Evolutionary Conservation</text> | |||
</jmolCheckbox> | |||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | |||
<div style="clear:both"></div> | |||
<div style="background-color:#fffaf0;"> | |||
== Publication Abstract from PubMed == | |||
The crystal structures of concanavalin A in complex with Man(alpha1-6)Man(alpha1-O)Me and Man(alpha1-3)Man(alpha1-O)Me were determined at resolutions of 2.0 and 2.8 A, respectively. In both structures, the O-1-linked mannose binds in the conserved monosaccharide-binding site. The O-3-linked mannose of Man(alpha1-3)Man(alpha1-O)Me binds in the hydrophobic subsite formed by Tyr-12, Tyr-100, and Leu-99. The shielding of a hydrophobic surface is consistent with the associated large heat capacity change. The O-6-linked mannose of Man(alpha1-6)Man(alpha1-O)Me binds in the same subsite formed by Tyr-12 and Asp-16 as the reducing mannose of the highly specific trimannose Man(alpha1-3)[Man(alpha1-6)]Man(alpha1-O)Me. However, it is much less tightly bound. Its O-2 hydroxyl makes no hydrogen bond with the conserved water 1. Water 1 is present in all the sugar-containing concanavalin A structures and increases the complementarity between the protein-binding surface and the sugar, but is not necessarily a hydrogen-bonding partner. A water analysis of the carbohydrate-binding site revealed a conserved water molecule replacing O-4 on the alpha1-3-linked arm of the trimannose. No such water is found for the reducing or O-6-linked mannose. Our data indicate that the central mannose of Man(alpha1-3)[Man(alpha1-6)]Man(alpha1-O)Me primarily functions as a hinge between the two outer subsites. | |||
The crystal structures of Man(alpha1-3)Man(alpha1-O)Me and Man(alpha1-6)Man(alpha1-O)Me in complex with concanavalin A.,Bouckaert J, Hamelryck TW, Wyns L, Loris R J Biol Chem. 1999 Oct 8;274(41):29188-95. PMID:10506175<ref>PMID:10506175</ref> | |||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |||
</div> | |||
==See Also== | ==See Also== | ||
*[[Concanavalin A|Concanavalin A]] | *[[Concanavalin A|Concanavalin A]] | ||
== References == | |||
== | <references/> | ||
< | __TOC__ | ||
</StructureSection> | |||
[[Category: Canavalia ensiformis]] | [[Category: Canavalia ensiformis]] | ||
[[Category: Bouckaert, J.]] | [[Category: Bouckaert, J.]] |
Revision as of 00:04, 29 September 2014
MAN(APLHA1-6)MAN(ALPHA1-O)METHYL CONCANAVALIN A COMPLEXMAN(APLHA1-6)MAN(ALPHA1-O)METHYL CONCANAVALIN A COMPLEX
Structural highlights
Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe crystal structures of concanavalin A in complex with Man(alpha1-6)Man(alpha1-O)Me and Man(alpha1-3)Man(alpha1-O)Me were determined at resolutions of 2.0 and 2.8 A, respectively. In both structures, the O-1-linked mannose binds in the conserved monosaccharide-binding site. The O-3-linked mannose of Man(alpha1-3)Man(alpha1-O)Me binds in the hydrophobic subsite formed by Tyr-12, Tyr-100, and Leu-99. The shielding of a hydrophobic surface is consistent with the associated large heat capacity change. The O-6-linked mannose of Man(alpha1-6)Man(alpha1-O)Me binds in the same subsite formed by Tyr-12 and Asp-16 as the reducing mannose of the highly specific trimannose Man(alpha1-3)[Man(alpha1-6)]Man(alpha1-O)Me. However, it is much less tightly bound. Its O-2 hydroxyl makes no hydrogen bond with the conserved water 1. Water 1 is present in all the sugar-containing concanavalin A structures and increases the complementarity between the protein-binding surface and the sugar, but is not necessarily a hydrogen-bonding partner. A water analysis of the carbohydrate-binding site revealed a conserved water molecule replacing O-4 on the alpha1-3-linked arm of the trimannose. No such water is found for the reducing or O-6-linked mannose. Our data indicate that the central mannose of Man(alpha1-3)[Man(alpha1-6)]Man(alpha1-O)Me primarily functions as a hinge between the two outer subsites. The crystal structures of Man(alpha1-3)Man(alpha1-O)Me and Man(alpha1-6)Man(alpha1-O)Me in complex with concanavalin A.,Bouckaert J, Hamelryck TW, Wyns L, Loris R J Biol Chem. 1999 Oct 8;274(41):29188-95. PMID:10506175[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|